【科學史沙龍】〈聆聽經驗與音樂訓練如何形塑大腦?〉&〈亥姆霍茲的聲音科學〉
對音樂家的大腦進行研究後,我們發現音樂家的聽覺皮層,可能因為規律而持續的長期訓練而增大,也比較能夠捕捉到聲音裡頭的細節;演奏特定樂器的音樂家,其大腦對於自己熟悉的器樂聲響,更會產生較強的反應。不同的音樂訓練方式,對於大腦的影響也不同,比方說指揮家的聽覺空間處理能力,就明顯比鋼琴演奏家來得優秀;爵士樂跟古典樂音樂家,大腦處理音樂的機制也不一樣。
Read more對音樂家的大腦進行研究後,我們發現音樂家的聽覺皮層,可能因為規律而持續的長期訓練而增大,也比較能夠捕捉到聲音裡頭的細節;演奏特定樂器的音樂家,其大腦對於自己熟悉的器樂聲響,更會產生較強的反應。不同的音樂訓練方式,對於大腦的影響也不同,比方說指揮家的聽覺空間處理能力,就明顯比鋼琴演奏家來得優秀;爵士樂跟古典樂音樂家,大腦處理音樂的機制也不一樣。
Read more同治帝的死因至今仍未有定論,官方說法是死於天花,民間則盛傳是因梅毒失控而斃命。然而透過近期出版,相當完整可靠的第一手官方診療紀錄,幾可確定同治帝的死因既非天花,更與梅毒無關,而是另有隱情。
Read more說起「被諾貝爾獎丟包的科學家」,最有名的應該算是革拉赫 (Walther Gerlach) 了。革拉赫與斯特恩 (Otto Stern) 合作完成了著名的原子角動量量子化實驗,他被提名諾貝爾獎達到 30 次之多,其中絕大多數都是跟斯特恩一起被提名,然而當斯特恩在 1944 年終於獲獎時,革拉赫卻只能乾瞪眼。實際上革拉赫才是這個實驗真正的操盤者,斯特恩在實驗完成前就已經離開法蘭克福大學,參與得不多;然而在 1933 年便移居美國的斯特恩,政治正確顯然遠勝過為納粹德國服務的革拉赫,斯特恩對於當年這項具有重大意義的實驗,也很技術性地輕描淡寫,革拉赫就這麼被丟包了。
Read more過去很長一段時間,科學實驗一直都是跟在科學理論的後面,只是為了要證實或否證理論而存在;就連孔恩的劃時代作品《科學革命的結構》,也是受到這樣的看待。然而哈金 (Ian Hacking) 在 1983 年出版《表徵與干預》 (Representing and Intervening) 一書,開創了實驗哲學,宣稱「實驗有它自己的生命」,讓實驗哲學跳脫科學哲學的傳統架構。本講次以「實驗是否可以重複?」的命題為出發點,探討這個新實驗哲學的發展脈絡。
Read more為什麼x2+1=0要有解?國中的時候,只需要在答案卷上寫個無解,就能讓我們考上高中。為什麼上高中之後,這個方程式就應該要有解?虛數又是什麼?在實際運用上很重要嗎?沒有虛數會怎麼樣?要了解這個問題,必須先從文藝復興說起……
Read more數學與文學一向被視為知識特徵的兩個極端,前者理性,後者感性。不過有學者指出數學與文學的思維有許多類似之處,本講次就分享在大學的數學史選修課中,如何引導學生將數學知識與概念融入小說創作之中,激發他們的文學創意和想像。
Read more在科學史沙龍<為什麼孔恩誤解了STS?>的講次中,我們談到啟迪人們對科學中社會學面向重視的孔恩,認為因之而起的科技與社會研究 (SSK/STS) ,是個錯誤的歧途發展。本講次延續前次的脈絡,介紹孔恩最出名的學生之一佛曼 (Paul Forman) 發表的經典論文,如何鼓動起孔恩對其深有保留的新興學派與學門 SSK/STS 。
Read more費曼在《物理定律的特徵》一書中說過:「我想我可以很確切地說,沒有人了解量子力學。」但是如今人們流傳的,是一句比較符合費曼在人們心目中的頑童形象,但他從未說過的話:「如果你以為你懂量子力學,那麼你就不懂量子力學。」科學史存在著許多這種真真假假,弄假成真的內容,本講次就以量子力學在 1925 年到 1935 年的關鍵十年發展期,為聽眾釐清當時許多針鋒相對的觀點真偽。
Read more有哈佛物理學博士學位的孔恩,在 1962 年出版的《科學革命的結構》,可能是 20 世紀最受矚目的一本學術著作。這本書喚起了人們對科學中社會學面向的重視,然而孔恩卻覺得因之而起的科技與社會研究 (SSK/STS) ,是個錯誤的歧途發展。為什麼孔恩會會有這樣的誤解,看不出 STS 的精彩之處呢?
--
一講到科學,人們經常認為那是真理以及理性的代表,然而孔恩的《科學革命的結構》卻讓許多人發覺,以科學史觀之,科學其實有其結構,而在建構科學的過程中,社會的各種因素扮演著重要的角色。這是一種理解科學的新途徑,然而科學真的是社會建構的嗎?在科學發明與創造的過程中,個人能力完全被社會因素淹沒了嗎?這樣的觀點是否否定了科學是知識的代表呢?
據說當年曾經有記者問愛丁頓,有人說全世界只有三個人真正懂得愛因斯坦的相對論,愛丁頓思考了一下,回答:「我在想第三個人是誰?」愛因斯坦與愛丁頓之間的關係,其實比這略帶曖昧的話還要密切,他們的互動甚至還被拍成電視劇呢!本講次藉他們兩人的故事,回顧二十世紀初期天文學與宇宙論的關鍵發展。
--
宇宙論在愛因斯坦的廣義相對論問世之後,就分為靜態宇宙論與演化宇宙論兩大派別,彼此爭執不下。現代廣為人所知的大霹靂宇宙論,要等到三項重要的推論被先後被證實之後,才成為物理宇宙學的主流,而這些研究工作與一位跑得比誰都前面,卻被大多數人遺忘的物理學家阿爾法緊密相連。本講次介紹這位無名英雄的研究工作,如何形塑大霹靂宇宙論。
非歐幾何的誕生,是數學史上的一個傳奇故事,而這圍繞著歐幾里得《幾何原本》的第五設準發展。數學家一開始試圖證明這個設準是否「多餘」,然而在承認這個任務失敗之後,他們終於面對世界上除了歐氏幾何以外,可能存在另一種新的幾何學。
--
從歐氏幾何真理的瑣碎補題出發,到嶄然確立的怪異幾何,非歐幾何的橫空出世,結束了一段兩千年的真理追索。透過對於高斯無上定理的認識,以及繼承高斯思想的黎曼發明/發現的幾何新觀點,非歐幾何得以被納入更宏大的系統,為現代數學與物理學奠立了新基礎。本講次主要交代高斯在非歐幾何發展史上的樞紐地位。
歐亞大陸的兩端,曾經同時存在著羅馬帝國與漢帝國,而這兩個帝國都有強盛的軍隊。回到西元前210年至西元後220年之間的時空背景,羅馬帝國的疆域包圍了地中海世界,漢朝的帝國則統治歐亞大陸的東端,兩者之間夾著波斯帝國。這樣的地理分佈,即讓後人對於兩帝國交戰的情節充滿想像。成龍主演的電影《天將雄師》便基於歷史學家的推測,虛構了兩帝國短兵相接的故事情節。那麼他們的軍隊真的曾經交手過嗎?若真有交手,勝負又是如何?歷史學家可由這兩支軍隊的裝備、戰鬥力、機動性、戰術及戰略等史料來思考這些問題。
Read more微積分發展初期,使用直覺式的論證,雖然實務上解決了許多問題,但是也陷入邏輯上的困境,論證的過程甚至被批評是「看到鬼」。數學家後來以「 epsilon-delta 極限定義法」,解決直覺論證的邏輯問題。本講次除了介紹其來龍去脈之外,也舉出人類為了理解「無窮」這個概念,想出來的許多方法,一起來認識這個美麗深邃的世界。
以複數為基礎的複變函數,可應用於流體力學、熱力學、電磁學等領域,是實用性相當高的數學思維。然而根號 -1 這個違反人們直覺的概念,直到 19 世紀才正式為數學界所接納。本講次介紹以根號 -1 為代表,虛數與複數概念的發展歷史脈絡。
Read more海洋微生物種類繁多,包括自營細菌、異營細菌、古細菌、病毒、纖毛蟲、鞭毛蟲、真菌、藻類等等,最早可追溯到 35 億年前的細菌化石。本講次回顧海洋微生物探索史的重要里程碑,以及目前已確定的一些關於海洋微生物的事實。
綠色能源、漁業資源、海洋汙染、氣候變遷,這些許多人關心的迫切議題,都與海洋科學研究息息相關。台灣這個四面環海的島國,在海洋研究的領域中,走過了哪些篳路藍縷的歷程,未來又有何展望?
Read more這場演講,是趟穿越時空的旅行。我們計畫從北極走到南極,了解太陽輻射與地球自轉如何驅動大氣環流,近而影響不同區域的氣候、生態與農業活動。我們也將穿梭古今,討論氣候學家們是如何利用理論、模擬、與觀測,探討過去、現在、與未來的氣候區分佈。當地球系統精巧的能量與動量平衡被人類打破時,世界將變成什麼樣子?
全球暖化是否確有其事?那是人類造成的嗎?有人對此深信不疑,有人對此嗤之以鼻,這事只能夠公說公有理,婆說婆有理嗎?本講次為您整理從科學角度來看,關於全球暖化的理與盲。