不具備磁性也能儲存資料:第三類磁性登場

交錯磁體是一種近年被發現與證實的特殊磁性結構。交錯磁性既不同於傳統的鐵磁性,也不同於反鐵磁性,展現出獨特的自旋排列與電子特性。在這種材料中,內部磁矩以特殊交錯方式排列,雖然整體不產生淨磁場,卻能對自旋電子產生明顯的選擇性作用。這使交錯磁性成為自旋電子元件領域的潛力新星,有望兼具鐵磁材料易於控制與反鐵磁材料抗干擾的優點,於去年更是被科學雜誌列為十大科學突破之一。隨著材料工程與測量技術的精進,交錯磁性有望從理論走向應用。若說二十一世紀的前半場是自旋電子學的起點,那交錯磁性極有可能就是下個重要的里程碑。

Read more

從硬解方程到智慧預測:AI打開材料新世界

過去科學家為了找出一種新材料,可能要花上數年時間解無數複雜的方程式,甚至動用超級電腦。現在,AI出現了,它不再「硬解」方程式,而是用學習過的數據幾秒內就能快、狠、準來預測材料性質!AI的介入正在翻轉材料科學的發現方式,從漫長試錯走向智慧預測。

Read more

稀土爭奪戰(4):二維稀土材料

你知道嗎?未來的手機可能充一次電就能用好幾天,電腦也不再發熱卡頓,這些科技進步的夢想,可能將由「二維稀土材料」來實現。稀土元素原本就像是科技產品的「維他命」,微量卻不可或缺;而當它們進入原子層級的二維狀態後,居然還能產生全新的電子行為,像是為電子傳輸安排交通指揮,使電子只能往特定方向移動,讓資料傳輸更快、能耗更低,雖然目前仍多停留在理論預測階段,科學家正在一步步讓這些理論成為現實,成為科技再次更上一層樓的契機!

Read more

稀土爭奪戰(3):稀土的提取與回收

2025年,美國川普總統提出以美國技術協助換取烏克蘭稀土開採權,此舉再次突顯稀土資源的重要戰略價值,但稀土的開發困難,並不是儲量不足,而是提取與分離稀土具有高度技術門檻,本文將介紹從傳統到新型的提取方法,能進一步理解為何美國能以技術作為談判籌碼,然而,稀土的回收仍是目前的一大挑戰,目前被使用在科技產品中的稀土僅有不到5%的回收率,如何循環利用這項資源仍是目前的一大挑戰。

Read more

蟻人時代來臨?控制昆蟲大軍或可成真

科幻電影的英雄可以透過特殊裝置來控制螞蟻大軍,這項技術在科學家長時間的研究下,逐漸變得可能,其方法主要透過負載於昆蟲上的微型電路傳送無線訊號,對昆蟲進行遠端控制,並回傳蟲體獲得的訊息。微型電路可包含電池、通訊、刺激運動、生理與環境監控等功能。刺激昆蟲運動的模組主要以直接與間接電刺激為主,也可透過刺激昆蟲的其他感官來進行控制。昆蟲的群體運動方面,科學家則是將群體分為幾個小群體,每個小群體則配有一名領隊與多名跟隨者。單獨控制多名領隊並賦予不同任務,跟隨者則依照領隊導航前行。目前已開發出相關演算法,並成功控制群體移動。

Read more

告別短命鈣鈦礦?最新技術讓太陽能電池更持久

鈣鈦礦太陽能電池因高效能與低成本製造技術而備受矚目,然而其材料不穩定性與鉛毒性問題一直是商業化的主要障礙。近期,北京大學研究團隊開發的碘插層技術突破了這一瓶頸,透過碘離子調控鈣鈦礦結構,降低α-FAPbI₃形成的能障,並透過退插層技術確保材料純度與穩定性。此技術使太陽能電池效率達24%以上,且在高溫環境下運行1180小時後仍保持99%的原始效率。這項突破性進展,或將加速鈣鈦礦太陽能技術的商業化,引領未來能源革命!

Read more

稀土爭奪戰(2):稀土如何強化科技設備?

稀土元素能為現代科技開外掛,無論是電動車的強勁加速、手機螢幕的鮮豔色彩,還是耳機中清晰動人的音質,這些都有賴於稀土元素的應用。稀土元素的強磁矩、高矯頑力以及高密度的能階,造就了當今高效能的科技產品,也因此稀土的礦權成為了國際間相互爭奪的標的,讓我們一起來了解稀土元素如何推動現有的科技吧!

Read more

稀土爭奪戰 (1):稀土是什麼?它一點都不稀有!

2025年2月美國總統川普試圖與烏克蘭總統澤倫斯基達成一項戰略協議,藉由對烏克蘭的軍事與經濟支持,換取美國在稀土元素開採上的優先權,這一舉動再次使稀土元素成為全球焦點。稀土元素雖名為「稀土」,但實際上其在地殼中的含量並不稀少,卻因開採困難且環保風險高,需要高科技技術進行開採,且分布高度集中於特定區域,成為全球供應鏈的戰略要點。無論你的政治立場為何,都讓我們一起以科學的角度來認識什麼是稀土元素吧!

Read more

無需插頭與電池的自我供電感測器

在智慧家電與物聯網快速發展的時代,感測器成為無數設備的必備元件,為我們的生活提供智能化支持。然而,在偏遠地區或無法頻繁維護的情況下,傳統感測器的能源需求限制了其應用範圍,像是難以配備電力設備,就算安裝電池也需時常更換。自供能感測器的出現為這一難題帶來解決之道,它透過從光、振動和溫差等環境能量中汲取電力,這種感測器無需依賴電池或外部電源,最新研究更引入「冷啟動」和能量管理技術,滿足高效能與環保的雙重需求,為智慧家居和物聯網設備開啟了更可持續的未來。

Read more

矽烯能否接棒石墨烯,改寫未來材料科技?

近年來,石墨烯 (Graphene) 掀起了一股材料科技的熱潮,這種由碳原子以蜂巢狀排列構成的二維材料,以其驚人的強度、導電性和熱導性,成為眾多科學突破的關鍵,然而,您是否聽說過矽烯 (Silicene)?這是一種由矽原子構成的蜂巢狀二維材料,不僅有著與石墨烯許多相似的物理特性,還因其與現有矽基半導體技術的高度兼容性,以及其高度的柔軟度,被視為次世代電子科技的明日之星!

Read more

用石墨烯接住大象?來認識描述石墨烯斷裂的理論模型!

石墨稀,被譽為「奇蹟材料」不僅擁有優異的導電與導熱性,也擁有極為優異的機械強度,理想的石墨稀在承受巨大外力的時候幾乎不會變形,因此《科學美國》(SCIENTIFIC AMERICA)的報導曾這樣描述:單層的石墨稀可以撐起一頭大象,然而,這樣完美的石墨稀並不容易取得,因此,科學家開始轉向探討石墨稀的斷裂機制,並找到背後的斷裂模型Griffith 理論,藉由此模型,我們可以了解,在不同裂縫存在的情況下,石墨稀的耐受極限為何,如此有望能開始將石墨稀落實在電子工程之中。

Read more

石墨烯的蝴蝶效應在量子科技上掀起風暴

石墨烯是一種由碳原子排列成蜂巢狀單層結構的材料,自2004年被成功分離後,由於它優異的物理特性,引起了材料科學的革命,科學家紛紛投入石墨烯的研究,在2024年2月,新加坡國立大學的研究團隊在《自然化學》(Nature Chemistry) 上發表了一項革命性成果,他們透過將石墨烯修飾成蝴蝶形狀,使其同時具有鐵磁性和反鐵磁性,而當中的電子則具有高度的量子自旋糾纏,這一發現被認為是量子科技發展的重大突破,有望成為新一代量子材料的基礎,推動量子計算和通信技術的進步。

Read more

用鐵電材料來為AI加速

在迅速發展的科技時代,人工智慧 (AI) 技術已經成為驅動各行各業進步的重要力量,然而,隨著AI應用的擴展和複雜性的增加,在數據傳輸效率和能耗方面的挑戰也同時增長。傳統的馮.諾伊曼 (von Neumann) 架構將計算和存儲分離的設計,數據的頻繁傳輸不僅限制了系統的運行速度,還造成了額外的能量消耗,為了解決這一瓶頸,內存計算 (In-Memory Computing, IMC) 技術應運而生。將計算單元直接集成到記憶體中,顯著提高了系統的效率和能量利用率,而鐵電記憶體是一種能實現IMC的元件,讓我們一起來認識什麼是鐵電記憶體吧!

Read more

黃金時代就要來了嗎?世界上最薄的黃金曝光了!

金箔是一種極薄的黃金薄片,常用於裝飾甜點以提升奢華感,其厚度約為10-7米。隨著科技進步,材料科學家合成了僅一原子層厚的金箔片,稱為Goldene,這是一種二維材料,又被稱為石墨稀的金黃表兄弟。Goldene是一種半導體材料,能幫助精確控制電流,滿足奈米電子元件需求,而且其巨大的表面積使其成為優異的催化劑,可降低化學反應活化能。瑞典林雪平大學發展出防止Goldene捲曲的方法,但製備過程相當耗時,若要大規模生產仍有難度。未來,隨著製備技術的完善,Goldene將在奈米元件和催化領域發揮更大作用,讓我們一起過上一個真正的「黃金時代」。

Read more

用雷射光在奈米材料上畫圖

奈米材料如何成為奈米科技,關鍵在於奈米圖案化技術,如電子束微影,這技術利用電子束在材料表面製作圖案,可達到奈米級解析度,並可製作奈米級電子元件,另一種技術是透過雷射在材料表面進行加工,然而,這些方法昂貴且複雜。哥倫比亞大學提出一種利用中紅外光與材料共振的新技術,能低成本且高解析度地製作奈米圖案,而這項作法看起來像是在為材料「解開拉鍊」一樣,這樣的方式為奈米科技的發展提供了新的方向。

Read more