黃金時代就要來了嗎?世界上最薄的黃金曝光了!

金箔是一種極薄的黃金薄片,常用於裝飾甜點以提升奢華感,其厚度約為10-7米。隨著科技進步,材料科學家合成了僅一原子層厚的金箔片,稱為Goldene,這是一種二維材料,又被稱為石墨稀的金黃表兄弟。Goldene是一種半導體材料,能幫助精確控制電流,滿足奈米電子元件需求,而且其巨大的表面積使其成為優異的催化劑,可降低化學反應活化能。瑞典林雪平大學發展出防止Goldene捲曲的方法,但製備過程相當耗時,若要大規模生產仍有難度。未來,隨著製備技術的完善,Goldene將在奈米元件和催化領域發揮更大作用,讓我們一起過上一個真正的「黃金時代」。

Read more

用雷射光在奈米材料上畫圖

奈米材料如何成為奈米科技,關鍵在於奈米圖案化技術,如電子束微影,這技術利用電子束在材料表面製作圖案,可達到奈米級解析度,並可製作奈米級電子元件,另一種技術是透過雷射在材料表面進行加工,然而,這些方法昂貴且複雜。哥倫比亞大學提出一種利用中紅外光與材料共振的新技術,能低成本且高解析度地製作奈米圖案,而這項作法看起來像是在為材料「解開拉鍊」一樣,這樣的方式為奈米科技的發展提供了新的方向。

Read more

電子的高速鐵路:量子自旋霍爾效應

你知道電子也有高速鐵路嗎?在拓樸絕緣體中,電子雖然不能在絕緣體中移動,但是卻能在這樣的材料表面中,如同在導體上一般移動,正如人們身處在壅擠的月臺上無法移動,但一當搭上月臺兩側的高鐵時,便能高速的行進。這便是著名的物理效應——量子自旋霍爾效應。

Read more

隱形戰機的剋星:量子雷達

隱形戰機是當代戰爭中的強力武器,因它能避開雷達的偵測,進行低空的精準投彈,不少國家投入相當的資金進行其研發。然而,隨著量子科技的發展,以量子糾纏為原理的量子雷達具備有追蹤隱形戰機的潛力,是否隱形戰機在戰場上的傳奇就將被打破?或許投資量子雷達這樣保家衛國的武器,更符合保家衛國的人道做法。

Read more

我喜歡鈮!最高溫的單質超導體

科學家喜歡使用鈮金屬來探討電子的行為,因為它是最高溫的單質元素超導體,其超導臨界溫度有9.2 K,雖然比起日常生活的溫度冷上許多,這溫度卻在實際的實驗上帶來許多的便利。因為鈮的晶格結構及電子結構特殊,以至於使它能擁有較高的臨界溫度。透過超導的特性,我們可以更多地瞭解純粹的電子行為,能更深入理解不同物理特性背後的運作機制。

Read more

皺巴巴的石墨烯

在面試中,當考官問到為何穿著皺巴巴的衣服時,你可能感到尷尬,卻無法以急忙出門忘記燙衣服為理由。這時,一個關於皺摺的故事或許能為你解套。研究指出,對石墨烯而言,皺摺能提升其性能,特別是增加皺褶有助於提高疏水性和電化學反應效能。因此,當面對逆境,不妨展現出皺褶的力量,解釋其在石墨烯中的重要性,或許能為你贏得一個機會!

Read more

用顯微鏡來展開奈米世界中的地圖

當提到顯微鏡,相信大部分的人腦中浮現的都是「光學顯微鏡」,除了光學之外,還有其他不同的顯微鏡,運用著其他的原理來探索微小世界。原子力顯微鏡是一種以「凡得瓦力」為基礎的顯微技術,能夠探索奈米級的表面結構;若換上具有磁性的探針,就搖身一變成磁力顯微鏡,以「磁力」作為基礎,能夠勾勒出材料表面的磁性分布。這兩套顯微鏡為科學家在奈米世界中「打開地圖」,不需打海撈針,能夠直接鎖定目標!

Read more

新時代的濾網:從病毒到海水都能過濾的石墨烯

在疫情流行這幾年間,石墨烯成為了「陰謀論」的主角,雖然它具有很多夢幻的特性,但卻不應該為此背黑鍋。另一方面,石墨烯在過濾病毒上的應用倒是被科學家高度關注,它能夠有效阻絕並破壞細菌,卻可能為人體帶來像石綿一般的風險。不過,石墨稀的過濾特性仍被持續的研究中。隨著氣候異常的現象日益頻發,近年來各地不時傳出缺水的危機,石墨烯被當作海水淡化的重要材料,藉由它奇特的特性能夠高效地將海水轉為飲用水。

Read more

當LK-99再次出現,你可以怎麼判讀?來認識超導體伴隨的獨特物性

2023年8月,韓國量子能源研究中心宣布取得物理材料領域的「聖杯」——「室溫超導體」。這一突破性消息成為全球焦點,引起各地新聞媒體報導。超導體具有電子無阻礙流動的特性,可實現高效率和零汙染的科技理想。然而,迄今多數超導現象僅能在極低溫環境下發生,限制了日常生活應用。除零電阻外的獨特特性,本文將介紹觀察超導體的重要實驗指標。當下一次又有人宣稱製作出「室溫超導體」時,或許我們就有更多的判讀能力!

Read more

太空科技手機!探索iPhone 15 Pro的航太級鈦金屬機殼

iPhone 15 Pro推出,搭載航太級鈦金屬外殼,為智慧型手機注入太空科技的魅力。每年九月,「果粉」期待著蘋果公司的最新發布會,而2023年iPhone 15 Pro的亮點之一,在於其採用了太空科技常見的鈦合金外殼。這款智慧手機旗艦版將挑戰「最耐摔又最輕盈」的頂尖地位。鈦金屬的獨特之處在於其優異的強度重量比,輕量且強度高,成為航太工程的首選材料,同時也能有效降低太空科技的能源消耗。透過鈦金屬,iPhone 15 Pro不僅突破了外觀與手持體驗的極限,更是夢幻般的太空科技體驗,令科技迷為之著迷。

Read more

轉角電子學:超導與絕緣自由切換的轉扭

我們有可能作一個轉扭,就使材料在絕緣體、超導體、鐵磁狀態自由切換嗎?當石墨烯以魔法夾角堆疊時,可以產生超導狀態;若是和六角硼氮組合成「三明治」時,竟然可以產生鐵磁性。二維材料結構簡單,藉由扭轉產生的特殊物理現象,可以幫助科學家更瞭解背後的生成機制。這類的研究進一步被歸類為「轉角電子學」,這樣的材料組成就像一個轉扭一樣,透過旋轉就可以切換其物理狀態!

Read more

【CASE特報】印度「月球3號」成功軟著陸登月!

「登陸月球」近年來再次成為太空科技發展的重要目標,而試圖減緩撞擊力道的「軟著陸」比起直接砸在地上的「硬著陸」,有著更多的技術門檻要克服。2023年8月24日,印度的「月船3號 (Chandrayaan-3)」成功以軟著陸的方式登陸在月球的南極,讓印度成為第四個有能力派遣無人探測器軟著陸月球的國家/組織!「月船3號」同時也是人類史上第一個成功登陸在月球南極的探測器——而幾天前才有人挑戰失敗而已……

Read more

在絕緣與超導間自由切換的石墨烯

2023年七月,「超導體」報導引起媒體大量關注,Google搜尋熱度暴增。超導體對科技發展與環保平衡至關重要,無電阻傳輸能夠大幅提高資訊處理速率,且大幅減少對環境的汙染。石墨稀擁有高導電性、高彈性和硬度等特點,身為近代最夢幻的材料,石墨稀也具備有超導特性。雙層石墨稀的1.1°「魔法夾角」堆疊可展現超導與絕緣特性,成為絕佳的電子開關。雖此狀態僅在極低溫出現,但這項發現仍有助於科學家理解超導機制。全球科學家們持續致力於克服障礙,期待實現無損耗能源使用,使科技與環保不再是矛盾。

Read more

石墨烯與它的好朋友——六角硼氮

白石墨稀 (h-BN) 作為石墨稀的好朋友,不只與石墨稀有相似的特性,還能使石墨稀有更卓越的表現。h-BN具有高硬度、高彈性和高導熱性,並擁有優異的化學穩定性和抗氧化能力。h-BN絕緣的特性可作為原子級的能障,被視為應用於量子穿隧元件的理想材料。此外,它在電子元件製造中可作為堅固的保護層,防止侵蝕。作為石墨稀的基板材料,h-BN的結構與石墨稀相似且表面平坦,能提升石墨稀的導電性達三倍之多。然而,製備高品質的h-BN需要在高溫和高真空的環境下,科學家們正致力於開發新的製程方法以實現商業化生產。

Read more

用電力來為材料充磁——左右坡莫合金的氧化鑷

來探索一下氧化鑷如何左右坡莫合金的「性格」吧!坡莫合金是一種鐵磁性材料,對外加磁場非常敏感。你可能知道,這種材料在磁場下會產生磁滯曲線,也就是磁性效應不會立即消失,這種特性使得坡莫合金在記憶元件中有很好的應用潛力。但是,當我們將氧化鑷與鐵鑷合金堆疊在一起時,事情變得更有趣了!這種堆疊會導致磁滯曲線產生偏移,也就是磁滯現象更難被消除,這意味著記憶體可以更長時間地保持信息,同時減少外部磁力對其的影響。還有一個有趣的概念——電力充磁,當我們為氧化金屬充電時,材料內的氧空缺會捕捉單一電子,使得材料帶有磁性,這樣的現象提供了一種新的方式來調整材料的磁性。

Read more