黃金時代就要來了嗎?世界上最薄的黃金曝光了!

金箔是一種極薄的黃金薄片,常用於裝飾甜點以提升奢華感,其厚度約為10-7米。隨著科技進步,材料科學家合成了僅一原子層厚的金箔片,稱為Goldene,這是一種二維材料,又被稱為石墨稀的金黃表兄弟。Goldene是一種半導體材料,能幫助精確控制電流,滿足奈米電子元件需求,而且其巨大的表面積使其成為優異的催化劑,可降低化學反應活化能。瑞典林雪平大學發展出防止Goldene捲曲的方法,但製備過程相當耗時,若要大規模生產仍有難度。未來,隨著製備技術的完善,Goldene將在奈米元件和催化領域發揮更大作用,讓我們一起過上一個真正的「黃金時代」。

Read more

人們對金屬的初步瞭解:Drude模型

自西元前8000年起,人類開始使用銅鑄造物品。到了西元前3300年,人們進入了青銅時代,開始提煉金屬製作工具和武器,但對金屬的本質並不清楚。1900年,保羅.德魯德 (Paul Drude) 提出Drude模型,假設電子在金屬中隨機運動並受磁場和電場影響,成功預測金屬電阻率隨溫度變化的趨勢,並解釋金屬的導熱性,因此人們有了對金屬最初步的定義:「電子能夠在當中自由移動的材料」。然而,隨著更多在金屬材料中不同物理現象的發現,Drude模型並無法符合所有的實驗結果,因為它並沒有電子的量子現象納入考慮。雖然如此,Drude模型仍提供我們一個理解電子在金屬中運動的基礎。

Read more

總統可以「物」人子弟嗎?

自臺灣民選總統以來,歷任總統多數具有法律背景,但2024年賴清德打破常規,成為首位具醫學背景的總統。那麼,未來若有物理系背景的總統會如何呢?在今年6月墨西哥選出史上第一位女總統克勞迪婭.辛鮑姆,她畢業於物理系。在過去,德國前總理安吉拉.梅克爾、印度前總統阿卜杜勒.卡拉姆,以及希臘的前總理盧卡斯.帕帕季莫斯也都擁有物理學的背景,他們如何運用科學知識在政治領域大放異彩呢?科學訓練為他們帶來獨特視角,更為國家發展注入新動能。讓我們一同深入瞭解,這些「物」人子弟如何來領導自己的國家。

Read more

用雷射光在奈米材料上畫圖

奈米材料如何成為奈米科技,關鍵在於奈米圖案化技術,如電子束微影,這技術利用電子束在材料表面製作圖案,可達到奈米級解析度,並可製作奈米級電子元件,另一種技術是透過雷射在材料表面進行加工,然而,這些方法昂貴且複雜。哥倫比亞大學提出一種利用中紅外光與材料共振的新技術,能低成本且高解析度地製作奈米圖案,而這項作法看起來像是在為材料「解開拉鍊」一樣,這樣的方式為奈米科技的發展提供了新的方向。

Read more

在太空中乘「光」破浪的奈米帆船

《三體》中的故事描述地球人為了與外星文明接觸,提出了「階梯計畫」,試圖利用奈米帆船的技術加速探測器前進。在現實生活中,NASA確實研發了奈米帆船-D(Nanosail-D),希望能利用太陽光進行可控的太空航行。儘管Nanosail-D曾經遭遇失敗,但NASA仍致力於奈米帆船中太陽帆的技術發展。太陽帆利用光子產生的微小推力進行推進,是一種具有潛力的低成本太空探測方式。隨著科技的進步,奈米帆船將帶動對宇宙奧秘的更深入探索,同時開發無汙染、零成本的太陽能源利用潛力。

Read more

《三體》中的奈米纖維真的存在嗎?

2024年初,Netflix上播出的《三體》成為臺灣地區熱門影集之一,它改編自劉慈欣的同名科幻小說。故事中,主角奧姬是奈米科技專家,透過奈米纖維改善人類生活。奈米纖維是一種能大幅提升表面積與體積比例的材料,可應用於醫療、過濾和藥物載體等領域。製作奈米纖維常用的方法是靜電紡絲,透過施加高電壓使液體成為帶電狀態,再拉伸成細流。雖然《三體》中呈現奈米纖維作為武器的場景純屬虛構,但它激發了對科學潛力的想像。讓我們來瞭解現實生活中奈米纖維的實際應用吧!

Read more

電子的高速鐵路:量子自旋霍爾效應

你知道電子也有高速鐵路嗎?在拓樸絕緣體中,電子雖然不能在絕緣體中移動,但是卻能在這樣的材料表面中,如同在導體上一般移動,正如人們身處在壅擠的月臺上無法移動,但一當搭上月臺兩側的高鐵時,便能高速的行進。這便是著名的物理效應——量子自旋霍爾效應。

Read more

隱形戰機的剋星:量子雷達

隱形戰機是當代戰爭中的強力武器,因它能避開雷達的偵測,進行低空的精準投彈,不少國家投入相當的資金進行其研發。然而,隨著量子科技的發展,以量子糾纏為原理的量子雷達具備有追蹤隱形戰機的潛力,是否隱形戰機在戰場上的傳奇就將被打破?或許投資量子雷達這樣保家衛國的武器,更符合保家衛國的人道做法。

Read more

我喜歡鈮!最高溫的單質超導體

科學家喜歡使用鈮金屬來探討電子的行為,因為它是最高溫的單質元素超導體,其超導臨界溫度有9.2 K,雖然比起日常生活的溫度冷上許多,這溫度卻在實際的實驗上帶來許多的便利。因為鈮的晶格結構及電子結構特殊,以至於使它能擁有較高的臨界溫度。透過超導的特性,我們可以更多地瞭解純粹的電子行為,能更深入理解不同物理特性背後的運作機制。

Read more

【科學史日誌】1959-1967年:電弱交互作用的統一

在高中物理課上會介紹自然界的四大作用力,分別是:重力、電磁力、強力、弱力。但你知道嗎?這四大作用力都有一些很神奇的相似之處,例如磁偶極間以及電荷間的交互作用力都跟重力一樣,與距離的平方成反比,這就是著名的庫侖定律。從二十世紀以來,不少物理學家都曾嘗試將重力和電磁力統一,但始終無果。但在其他作用力的統一上,卻有了不少研究與突破。例如1935年湯川秀樹便曾試圖將強–弱作用統一;至於建立起弱電場論的功勞,則歸因於格拉肖、薩拉姆和萬柏格三人的鑽研。

Read more

皺巴巴的石墨烯

在面試中,當考官問到為何穿著皺巴巴的衣服時,你可能感到尷尬,卻無法以急忙出門忘記燙衣服為理由。這時,一個關於皺摺的故事或許能為你解套。研究指出,對石墨烯而言,皺摺能提升其性能,特別是增加皺褶有助於提高疏水性和電化學反應效能。因此,當面對逆境,不妨展現出皺褶的力量,解釋其在石墨烯中的重要性,或許能為你贏得一個機會!

Read more

【科學史日誌】1956年7月20日:微中子的發現

科學研究的突破與發現總是循著脈絡環環相扣。有了貝克勒在1896年歪打正著發現鈾鹽的放射性,才開啟了後續一連串對於輻射、核能、帶電粒子射線等的研究。而在研究β衰變過程中,離奇地出現了違反角動量守恆的現象,包立於是大膽提出了有種質量極小的粒子被釋放出來的假設,而後費米又進一步完善假設,提出費米β衰變理論,「微中子」以傳聞中的幽靈型式首次被大家認識。而這隻幽靈在隨後的二十年當中,不斷透過各種實驗結果證明自己的存在,但始終無法見到它。直到1956年7月20日,瑞恩斯與科安將氫靶放置在原子爐附近,透過液閃爍偵檢器偵測光子信號間的關聯性,確定了微中子真實存在,讓這個「只聞其聲不見其人」的神祕粒子被科學界接受。

Read more

新時代的濾網:從病毒到海水都能過濾的石墨烯

在疫情流行這幾年間,石墨烯成為了「陰謀論」的主角,雖然它具有很多夢幻的特性,但卻不應該為此背黑鍋。另一方面,石墨烯在過濾病毒上的應用倒是被科學家高度關注,它能夠有效阻絕並破壞細菌,卻可能為人體帶來像石綿一般的風險。不過,石墨稀的過濾特性仍被持續的研究中。隨著氣候異常的現象日益頻發,近年來各地不時傳出缺水的危機,石墨烯被當作海水淡化的重要材料,藉由它奇特的特性能夠高效地將海水轉為飲用水。

Read more

當LK-99再次出現,你可以怎麼判讀?來認識超導體伴隨的獨特物性

2023年8月,韓國量子能源研究中心宣布取得物理材料領域的「聖杯」——「室溫超導體」。這一突破性消息成為全球焦點,引起各地新聞媒體報導。超導體具有電子無阻礙流動的特性,可實現高效率和零汙染的科技理想。然而,迄今多數超導現象僅能在極低溫環境下發生,限制了日常生活應用。除零電阻外的獨特特性,本文將介紹觀察超導體的重要實驗指標。當下一次又有人宣稱製作出「室溫超導體」時,或許我們就有更多的判讀能力!

Read more

【科學史日誌】1948年5月:朝永振一郎 (Sin-Itiro Tomonaga) 採用重整方法完構量子電動力學

二十世紀初,有兩顆重磅炸彈被投入物理領悟——量子力學與相對論,它們掀起了革命性地風暴,開創全新的研究領域,更孕育了無數諾獎的得主。朝永振一郎也是這片煙花中的燦爛星火,他鑽研的領域是量子電動力學的研究,其研究團隊發現電子散射幅中的發散其實是源自於質量和電荷的發散,而且質量和電荷的發散形式類似。其後,又基於貝特的量子估算,最終完整了量子電動力學的主架構,於1965年與其他兩位QED奠基人許溫格、費曼獲得諾貝爾獎的桂冠。

Read more