賦予塑膠袋新生命

當社會大眾逐漸意識到塑膠垃圾造成的健康與環境問題,回收、減用塑膠製品成了當前的重要議題。如何更經濟、更環保地再利用這些塑膠廢棄物,是科學家們一直想解決的問題。現在,科學家們有了新的解答:利用鉑催化劑,可以將聚乙烯製品升級再造,生成具有高附加價值的芳香烴類化合物。

Read more

加點糖就能搞定——粉蝨對芥子油炸彈的防爆機制

如同人類為了抵禦細菌與病毒,而發展出複雜的免疫系統。十字花科植物對於害蟲的入侵,也有一套自我防禦的武器——芥子油炸彈,但這套裝備似乎對自備吸管的粉蝨一點辦法也沒有。科學家一直認為是粉蝨的刺吸式口器避免了防禦機制的啟動,最新的研究卻指出,芥子油炸彈確實引爆了,不過粉蝨卻能靠著分泌的蜜露化險為夷。

Read more

越大越好—細菌、酶、輔因子與鑭系元素

當有「科技維他命」之稱的稀土元素被廣泛應用於生活各個角落,開採與回收這些金屬背後,昂貴的冶煉成本與伴隨的污染問題,需要更有效且友善環境的萃取方法。實驗室中,科學家發現有些特殊的細菌,能擷取環境中的鑭系元素。這些細菌的醇脫氫酶與它們的輔因子PQQ,能捕捉原子序較小(earlier),同時也是體積也較大的鑭系元素,或許能為稀土的純化翻開下個篇章。

Read more

【2020諾貝爾化學獎】基因剪刀:一個改寫生命密碼的工具

艾曼紐爾•夏本提爾(Emmanuelle Charpentier)與珍妮佛•道納(Jennifer Doudna)榮獲了2020年諾貝爾化學獎的桂冠,主要是因為她們發現了基因技術中最強大的工具之一:CRISPR/Cas9基因剪刀。研究人員可以非常精準地使用它們改變動物、植物和微生物的DNA(去氧核糖核酸)。這個技術徹底改變了分子生命科學,為植物育種帶來了新機會、有助於創新的癌症療法、並可能使治癒遺傳性疾病的夢想成真。

Read more

釕-106來源追溯——非放射釕同位素分析

2017年秋天,東歐上空出現釕-106(106Ru)放射性元素污染雲層。2020年六月,德國漢諾瓦萊布尼茲大學與明斯特大學的科學家們為這個謎團提供了新的線索。研究指出釕-106的來源,是已用過的核電廠燃料(又稱為乏燃料,spent nuclear fuel)。進一步的分析顯示,真正的源頭是俄式壓水反應爐(water-water energetic reactor, VVER)的核燃料再處理過程(nuclear reprocessing)中產生的洩漏。

Read more

【科學史沙龍】〈為何人類需要臭氧層?臭氧層如何因人類而破洞〉&〈談氣膠與大氣、海洋、人文的關係〉

地球大氣層中的臭氧分子,能夠吸收陽光中對生物有害的紫外線,然而臭氧層卻因為人類近數十年來的活動,在南極上方破了一個大洞。本講次說明臭氧吸收紫外線的機制,以及臭氧層破洞的成因。

俗稱 PM 2.5 懸浮微粒的氣膠,近年來造成嚴重的空汙問題。世界衛生組織不但宣布 PM2.5 為致癌因子,甚至估計每年死於空汙問題的人數多達 700 萬人。在環境汙染致死人數,已超越戰爭、天災、疾病等等傳統災難的情況下,你我該如何因應?

Read more

【2019諾貝爾化學獎】他們開發出世界上最有力的電池

2019年的諾貝爾化學獎頒發給了John B. Goodenough (古迪納夫),M. Stanley Whittingham (惠廷翰)和Akira Yoshino(吉野彰)三人,表彰他們為鋰離子電池的發展所做出的貢獻。這種可充電電池奠定了如手機和筆記型電腦等無線電子產品的基礎。這也使得一個無石化燃料的世界成為可能,因為它可以使得從驅動電動車到儲存能量裝置的各種工具能運用可再生能源。

Read more

單位革新:重新定義公斤

「世界計量日」紀念著一百四十年多前簽定的《米制公約》(Metre Convention, 1875),自那時起逐漸確立了國際統一的度量衡系統。2019年世界計量日打出的口號是「基礎更為穩固的國際單位制」(“The International System of Units – Fundamentally better”),之所以說是「基礎」,是因為從這一天起,幾個基本單位的新式定義就正式上路了。

Read more

1937年諾貝爾物理獎的關鍵影響

湯姆森於1937年與Clinton Davisson(戴維森)共同獲得諾貝爾物理獎,二組人馬透過不同的實驗證實了德布羅意物質波的存在,在整個量子力學的發展和信度上扮演了關鍵的角色。此文雖然在介紹湯姆森,但是對那1920年代與量子力學的發展相關之背景有清楚的說明,對湯姆森與戴維森之間有趣的競合關係亦有生動的描述,已成為我講課的資料。

Read more