美國海軍發表「室溫室壓超導體」專利

電流在超導體內能不受阻力的流動,可以100%傳遞電能,不損失能量也不排放廢熱。如果能在室溫實現超導體,將是一個顛覆性的科技。近日,美國海軍發表一份關於室溫超導體的專利。不同於其他同性質的專利,它並不著重於任何化學配方,而是描述一個能產生超導的物理機制。儘管專利內並沒有實驗數據佐證,其提出的方法可信度非常高。

Read more

葡萄的微波爐物理

■把對切的葡萄放進微波爐,在微波的加熱下會產生電漿和火花。由於視覺效果奇特,這種葡萄電漿的影片在網路上盛傳。在大部分的影片中,葡萄的果肉被切開,但果皮仍然相連。因此許多人推測電漿產生的原理是:由於果皮富含離子,具有良好導電效果,使得相連的兩片葡萄像天線一樣吸收微波輻射。近期有科學家深入研究這個葡萄電漿,發現果皮的導電性其實並不重要,葡萄本體才是關鍵。

Read more

新一代製程的關鍵:13.5奈米的「極端」紫外光

■從1990年代至今,半導體界持續使用波長為248奈米和193奈米的光源製造電子元件。這段期間科學家和工程師不斷挑戰物理極限,使用相同的波長製造出更精細的元件,至今已經超過二十年。然而,半導體從1997年的250奈米節點到2018年的7奈米節點,很難再繼續微縮了。為了製作更小更快的電子元件,半導體製程需要波長越短的光線。下一個世代的半導體將會使用全新的光源:波長為13.5奈米的極端紫外光。

Read more

氣體可以當作透鏡使用嗎?

■透鏡是光學最基本的元件之一,它能讓光線聚焦或發散,也能讓物體成像放大或縮小。要對越小的物體成像,必須使用波長越短的光線。在許多應用中,只有極端紫外光(波長在100奈米以下)才能滿足成像的需求。但是短波長的光線非常容易被物體吸收,所以大部分的透鏡對極端紫外光來說都是不透明的。德國科學家使用氣體透鏡解決這個問題。這個氣體透鏡的吸收率只有5%,能調控光線折射的角度和光束聚焦的程度,並且能同時當作凹透鏡和凸透鏡使用。

Read more

指尖上的同步輻射

■同步輻射是電子等帶電粒子加速度時釋放的輻射。這些輻射有亮度高、準直性好和偏振單純等良好性質,被廣泛應用在科學研究中。台灣是世界上少數擁有同步輻射技術的國家之一。位於新竹的台灣光子源是台灣自行設計的同步輻射設施,周長超過半公里,是世界上最亮的光源之一。由於同步輻射設施龐大,通常需要國家級的資金,甚至是跨國合作才有辦法建造。如果能將設施尺寸縮小,同步輻射的應用將更廣泛。本文介紹科學家透過奈米科技和超光速技術,將同步輻射縮小到毫米等級的初步結果。

Read more

淺度量子電路 – 現階段真正的量子優勢

■量子優勢(Quantum Supremacy) 是一個假說,指的是量子電腦擁有任何古典電腦都無法匹敵的計算能力。各大研究機構、政府和公司都正積極發展量子電腦,其原因非常明顯:誰能掌握最強的計算能力,誰就能掌握包含人工智慧、情報和安全通訊等科技的主宰權。但是在現階段,量子電腦還處於嬰兒時期,而且量子優勢是否真實存在還是一個未知數。本文介紹現階段量子電腦的合理應用,以及IBM 科學家證明量子電腦在某個常見的問題具有絕對優勢。

Read more

輕量加密、同態加密與區塊鏈:新世代密碼學的三大聖杯

■密碼學是安全通訊的基礎。密鑰是加解密訊息的重要依據。對於密鑰持有者以外的人而言,唯有暴力破解或竊取密鑰一途。前者需要龐大運算資源,可能一輩子都徒勞無功,後者相對而言容易許多。1970年代, Whitfield Diffie提出一個嶄新的密鑰分享協定,解決了如何安全傳遞密鑰的難題,奠定現代安全通訊的基礎,也因此獲得圖靈獎殊榮。然而隨著AI與物聯網的興起,密碼學也因此遭遇新的難題,本文將聚焦於其中三項前景看好的潛在解決方案。

Read more

100%填滿的全像量子井

■原子是組成大部分物質的基本單位,自由操縱單一原子可說是一種終極科技。1990年代,IBM就展示了原子操縱術,用35顆原子排出「IBM」三個英文字母。但是這個技術只能用在材料表面,原子僅限在二維方向中移動,三維空間的原子操縱仍未達成。隨著冷原子科技的發展,科學家對原子的掌握度越來越高,如今終於能用原子在真空中排出任意複雜的3D結構。這項科技能應用在新穎材料發展、凝聚態物理研究和量子電腦開發。

Read more

從一張2D影像直接建構3D資訊

■面對一張影像,我們「得到」的比起我們實際「看到」的豐富許多。我們的大腦在理解影像時,會將常識應用在其中,解讀影像沒有包含的部分。例如:看到桌子的三隻腳,我們能推論出被擋住的第四隻腳的形狀和顏色。要訓練人工系統達到相同的空間認知能力,需要大量手工標記的數據。對此,DeepMind公司近日發展一種人工智慧,能蒐集數據並訓練自己,突破數據不足的限制。對於一張2D影像,它能建構出3D的空間資訊,並且對從未看過的場景做出正確的預測。

Read more

機器學習的量子力學方法

■與其說AI是一個新的熱門領域,它更像是一個工具或是基礎建設,讓人們探索傳統科學和工程領域的新面向。另一方面,量子電腦也是一個重要的工具,它能快速解決許多古典電腦無法解的問題,也在網路安全和加密通訊上有重要應用。這幾年,量子電腦和AI快速發展,在科技上都不斷有重大的突破。這兩項看似不同的領域,其實都是一種「計算」科技。兩種計算科技蓬勃發展至今,不禁讓人好奇:如果這兩項科技結合,會是什麼樣子呢?

Read more

向量式導航和人工網格細胞

■探索新的道路、回到記憶中的地點和尋找捷徑等,這些能力看似簡單,卻難以解釋。一直以來,大腦的空間辨認能力是個謎,沒有數學模型能夠好好地描述,亦沒有人工智慧能在這方面和大腦相比。直到最近,採用深度強化學習的最新人工智慧達到了人類等級的空間辨識和導航能力,它不僅能走迷宮,還會抄近路,這給了大腦科學很大啟發。

Read more

從神經元開始的人工智慧

■當今許多器官的機械功能都能被人造取代。在小說中,各個器官組合成科學怪人,但在現實中,僅僅拼裝這些人造器官並不會變成人造人。神經元將資訊從各個器官彙整到中樞處理,這樣的「意識」或是「智慧」才是人的核心。本文從神經元開始,介紹基於神經元的人工智慧。

Read more

機器人能作畫和演奏嗎?

■如果問哪些能力是人類最可貴的,相信許多的人都會回答「創造能力」。透過聲音和色彩,人類能創造出引發共鳴的音樂和繪畫;透過文字,人類能創造出感動好幾個世代的文學作品。就像是小說中科學怪人也能學習語言和感情等抽象表達,透過人工神經網路,現在機器人能夠學習畫畫和音樂!

Read more

咖啡中的流體力學

■前一陣子,咖啡拿鐵和抹茶拿鐵非常流行,每天在臉書和IG上都能看到好多人在喝。你是否曾經好奇過,為什麼有些人的拿鐵只分兩層,有些人的有好多層?你不是唯一好奇的人!美國普林斯頓大學機械系的研究生也跟你一樣曾在咖啡杯前思考這個問題。他們發現這跟咖啡倒入牛奶的速度有關。不只是這樣,這個現象居然跟海洋分層一樣,可以用流體力學中的「雙擴散對流」解釋。本文介紹這個有趣的咖啡科學,首先讓我們來看一下怎麼泡一杯咖啡拿鐵。

Read more