導電紙

利用滾輪將離子凝膠附著在紙上,這些離子凝膠具導電性並且會滲入紙的纖維,經過適當熱處理讓溶劑揮發後,導電物質便能留在紙的纖維中。離子凝膠其實也是由高分子組成,含有導電的有機物(所以雖然說紙本身環保,但添加物還免不了有不環保的物質)。相較於其他在實驗室小規模生產的技術,利用像印刷術的滾輪進行製備能夠大量且快速生產,且離子凝膠的楊氏係數與紙接近,當紙被彎曲或捲起時,這些導電物質還能夠附著在紙上,維持其導電度。

Read more

有機分子鏈上的鎳原子搬運工

■有機化合物在生活中遍處可見,舉凡塑膠袋、潤滑油和清潔劑等,都是有機化學工程的產物。產生純度高的有機產物是化工製程的目標也是挑戰。長久以來,常見的純化方法是分餾法,透過物理性質分離不同的化合物,這個過程緩慢且成本高。如果有一種反應,能把結構不同的有機物,通通變成相同的目標產物,那該有多好?

Read more

【科學史沙龍】恐怖武器怎麼登上月球的:火箭的故事

■1957 年 10 月 4 日,蘇聯發射人類第一顆人造衛星史普尼克一號,從此揭開太空時代的序幕。不過將衛星送上地球軌道的火箭,在此之前已經有十幾年的演進。火箭是如何從用來殺人的戰爭機器,化身為承載人類夢想的偉大載具?曾經服務於 NASA 戈達德太空飛行中心的趙丰老師,為我們簡述火箭發展與應用的歷史。

Read more

次10奈米世代的半導體怎麼做?

■在相同的區域放入越多的電子元件,代表同一支手機或電腦裝置能提供更強更快速的服務,因此縮小處理器中電子元件的尺寸是所有半導體大廠共同的目標。能依照國際半導體技術藍圖(ITRS)提升製造能力的公司將能獨佔市場,就像台積電排除三星公司,將在2017和2018年連續獨佔蘋果iPhone手機處理器。若要在未來的半導體節點持續保持領先,科技必須與時俱進。在這個10奈米節點以下的世代,各家製造商正積極尋求增加單位面積上電路效能的方法。

Read more

熱整流效應

■二極體(Diode)是一個常見的電子元件,當元件通電時,電流只能從正流到負,不能從負流到正,這個現象稱為整流,中學物理也曾提及二極體是將交流電變直流電的方法之一。電流可以被整流,其他流是不是也可以呢?美國內布拉斯加大學林肯分校(University of Nebraska-Lincoln)的idy Ndao教授最近研發出給熱流用的二極體,讓熱傳往某一特定方向的速度大於反方向,並且可以在高溫下(326 °C)使用,其結果發表在 Scientific Reports 。

Read more

矽製程相容的二維半導體

■隨著科技的進步,電子裝置日漸縮小,功能卻能增加,這全都有賴半導體產業中的摩爾定律。然而,在傳統半導體架構中,尺寸上的縮小有物理上的極限,眼看摩爾定律的末日就要到了!因應這個問題,許多半導體研究機構致力研發新的科技,搭配上二維材料,部份地解決了縮小半導體尺度時會面臨的困難。然而這些材料和長久使用的半導體科技並不相容,無法真正投入應用。近日,科學家提出一種新穎的半導體製程,能夠製造原子級厚度的二維半導體。這個技術有望併入以矽為基礎、廣為使用的製程。

Read more

去除汞汙染的海綿

汞是一劇毒金屬,對人類及環境危害極大。1950年代日本熊本縣水俁市附近居民陸續出現汞中毒症狀,受害者超過萬人,汞汙染的症狀也因而命名為水俁病。1998年台塑也曾在柬埔寨棄置汞污泥,引發軒然大波,這一事件更是喚起一般民眾對汞汙染的警覺(想太多,過幾天就忘了)。但如何處理汞汙水一直讓科學家傷透腦筋。美國明尼蘇達大學研發出吸汞能力超強的海綿以對抗污染。

Read more

【科學講古列車】太空探索的故事

■2017年二月二十二號,美國太空總署(NASA)宣布天文界重大發現,在離地球不到40光年處,找到7顆類地球行星環繞1顆名為「TRAPPIST-1」矮恆星運行,這是迄今在太陽系外找到生命的最大契機。從古人的宇宙幻想神話故事到現今高科技望遠鏡、火箭,人類探索宇宙的歷史是從何開始?又是如何從渺小的好奇心萌芽為現今遠大的科學移民計畫?

Read more

多功能LED面板

■有些智慧型手機具備自我調節螢幕亮度的能力,從室外進到陰暗的室內,螢幕亮度會自動變暗。但這類自我調節亮度的功能都是整片螢幕調節,如果有個更聰明的螢幕,當你站在樹蔭下,樹影剛好遮住一半螢幕,被遮住的一半會自動變暗讓螢幕看起來更均勻,是不是更方便呢?

Read more