電子的高速鐵路:量子自旋霍爾效應
你知道電子也有高速鐵路嗎?在拓樸絕緣體中,電子雖然不能在絕緣體中移動,但是卻能在這樣的材料表面中,如同在導體上一般移動,正如人們身處在壅擠的月臺上無法移動,但一當搭上月臺兩側的高鐵時,便能高速的行進。這便是著名的物理效應——量子自旋霍爾效應。
Read more你知道電子也有高速鐵路嗎?在拓樸絕緣體中,電子雖然不能在絕緣體中移動,但是卻能在這樣的材料表面中,如同在導體上一般移動,正如人們身處在壅擠的月臺上無法移動,但一當搭上月臺兩側的高鐵時,便能高速的行進。這便是著名的物理效應——量子自旋霍爾效應。
Read more■理論物理學家們想透過費米液體理論中的 Pomaranchuk 不穩定性來說明量子霍爾效應中觀測到的向列相(nematic phase)物理,第一個數值計算,告訴我們這是可能的。
Read more■實驗上已經觀察到在半導體中 v=5/2 & 7/2 不僅僅可以是量子霍爾態,還可以透過改變壓力產生的相變化,自發地破壞旋轉對稱性。
Read more■v=5/2到底發生了什麼事?這是研究霍爾效應的學者們近年來最關切的問題之一。
筆者曾用了三四篇文章來討論霍爾效應。從經典的整數量子霍爾效應(IQHE)、分數量子霍爾效應(FQHE)、複合費米子(Composite Fermion)到最近重新掀起討論的 v=1/2費米液體態(Fermi Liquid)。在本文中筆者想延伸這些故事,討論另一個實驗上被觀測到的著名的偶數分母的量子霍爾態—— v=5/2,以及它所牽涉的謎團。
■這兩年物理學家提出了新的粒子電動對稱的理論解釋最低蘭道階(Landau Level)的物理,此新模型不再透過將磁通量附著到原粒子身上,而是藉由粒子漩渦對偶性,用更自然的方法去闡述一些實驗上觀測到的現象。
Read more■在 Laughlin 波函數後,J.
Read more■真的要寫量子霍爾效應,可以寫好幾本書,
Read more