脫離雲端「中央集權」─人工智慧「地方自治」時代來臨
■「In-Situ AI」這套運算架構,因應物聯網資料的特性與使用情境,在資料收集處就地進行大部分的運算工作。不同於以往將資料全部傳到「中央」的雲端,再接收「中央」決策完回傳的指令,In-Situ AI 發揮了「地方自治」的精神,善用地方資源、產生因地制宜的策略。其架構分為兩大部分:運算中樞(Node)與雲端。雲端有較高的運算能力,負責從大量的物聯網資料進行非監督式學習,汲取重要的特徵。接著藉由遷移學習(transfer learning),讓運算中樞的推理網路(inference network)認識這些特徵。如此在有限的標記資料下,推理網路也能對周遭世界具有一定程度的判讀能力。實驗結果顯示,遷移學習學到的特徵,讓推理網路預測的準確率提升30 %(達到近60 %),彌補標記資料不足的限制。
Read more