石墨烯的蝴蝶效應在量子科技上掀起風暴

石墨烯是一種由碳原子排列成蜂巢狀單層結構的材料,自2004年被成功分離後,由於它優異的物理特性,引起了材料科學的革命,科學家紛紛投入石墨烯的研究,在2024年2月,新加坡國立大學的研究團隊在《自然化學》(Nature Chemistry) 上發表了一項革命性成果,他們透過將石墨烯修飾成蝴蝶形狀,使其同時具有鐵磁性和反鐵磁性,而當中的電子則具有高度的量子自旋糾纏,這一發現被認為是量子科技發展的重大突破,有望成為新一代量子材料的基礎,推動量子計算和通信技術的進步。

Read more

皺巴巴的石墨烯

在面試中,當考官問到為何穿著皺巴巴的衣服時,你可能感到尷尬,卻無法以急忙出門忘記燙衣服為理由。這時,一個關於皺摺的故事或許能為你解套。研究指出,對石墨烯而言,皺摺能提升其性能,特別是增加皺褶有助於提高疏水性和電化學反應效能。因此,當面對逆境,不妨展現出皺褶的力量,解釋其在石墨烯中的重要性,或許能為你贏得一個機會!

Read more

新時代的濾網:從病毒到海水都能過濾的石墨烯

在疫情流行這幾年間,石墨烯成為了「陰謀論」的主角,雖然它具有很多夢幻的特性,但卻不應該為此背黑鍋。另一方面,石墨烯在過濾病毒上的應用倒是被科學家高度關注,它能夠有效阻絕並破壞細菌,卻可能為人體帶來像石綿一般的風險。不過,石墨稀的過濾特性仍被持續的研究中。隨著氣候異常的現象日益頻發,近年來各地不時傳出缺水的危機,石墨烯被當作海水淡化的重要材料,藉由它奇特的特性能夠高效地將海水轉為飲用水。

Read more

轉角電子學:超導與絕緣自由切換的轉扭

我們有可能作一個轉扭,就使材料在絕緣體、超導體、鐵磁狀態自由切換嗎?當石墨烯以魔法夾角堆疊時,可以產生超導狀態;若是和六角硼氮組合成「三明治」時,竟然可以產生鐵磁性。二維材料結構簡單,藉由扭轉產生的特殊物理現象,可以幫助科學家更瞭解背後的生成機制。這類的研究進一步被歸類為「轉角電子學」,這樣的材料組成就像一個轉扭一樣,透過旋轉就可以切換其物理狀態!

Read more

在絕緣與超導間自由切換的石墨烯

2023年七月,「超導體」報導引起媒體大量關注,Google搜尋熱度暴增。超導體對科技發展與環保平衡至關重要,無電阻傳輸能夠大幅提高資訊處理速率,且大幅減少對環境的汙染。石墨稀擁有高導電性、高彈性和硬度等特點,身為近代最夢幻的材料,石墨稀也具備有超導特性。雙層石墨稀的1.1°「魔法夾角」堆疊可展現超導與絕緣特性,成為絕佳的電子開關。雖此狀態僅在極低溫出現,但這項發現仍有助於科學家理解超導機制。全球科學家們持續致力於克服障礙,期待實現無損耗能源使用,使科技與環保不再是矛盾。

Read more

石墨烯與它的好朋友——六角硼氮

白石墨稀 (h-BN) 作為石墨稀的好朋友,不只與石墨稀有相似的特性,還能使石墨稀有更卓越的表現。h-BN具有高硬度、高彈性和高導熱性,並擁有優異的化學穩定性和抗氧化能力。h-BN絕緣的特性可作為原子級的能障,被視為應用於量子穿隧元件的理想材料。此外,它在電子元件製造中可作為堅固的保護層,防止侵蝕。作為石墨稀的基板材料,h-BN的結構與石墨稀相似且表面平坦,能提升石墨稀的導電性達三倍之多。然而,製備高品質的h-BN需要在高溫和高真空的環境下,科學家們正致力於開發新的製程方法以實現商業化生產。

Read more

市面上的石墨烯產品,真的有那麼厲害嗎?

石墨稀是近年來最熱門的材料之一,具備高硬度、高彈性、高導電、高導熱的特性,被廣受期待能應用於各式生活用品上。你知道嗎?石墨烯與我們的生活很接近,每個人皆使用過具有石墨烯的產品——鉛筆。石墨稀由碳原子組成並以蜂巢狀結構排列,其製備的方式多元,目前最常用的方式是化學氣相沉積法,然而,製造成本仍居高不下。近年來,市面上有許多宣稱含有石墨烯的產品,讓人眼睛為之一亮並爭相加入購物車,在下單石墨烯相關產品之前,你需要做足功課!

Read more

矽製程相容的二維半導體

■隨著科技的進步,電子裝置日漸縮小,功能卻能增加,這全都有賴半導體產業中的摩爾定律。然而,在傳統半導體架構中,尺寸上的縮小有物理上的極限,眼看摩爾定律的末日就要到了!因應這個問題,許多半導體研究機構致力研發新的科技,搭配上二維材料,部份地解決了縮小半導體尺度時會面臨的困難。然而這些材料和長久使用的半導體科技並不相容,無法真正投入應用。近日,科學家提出一種新穎的半導體製程,能夠製造原子級厚度的二維半導體。這個技術有望併入以矽為基礎、廣為使用的製程。

Read more