費曼之於固態物理:超導與超流

■在學界內,費曼是出了名的不愛寫文章,當然那個時代學術的市場還不是那麼競爭,加上他在學術的聲望,讓他可以耐心將有趣的工作完成到一定水準再與世人分享。然而,大家如果查閱他的著作年表,會發現他在 1953-1955 年間密集推出了好幾篇文章,同時間他的勁敵 Schwinger 正費心力將量子電動力學雕塑成更優雅工整的形式,費曼卻暫時放下粒子物理,將他路徑積分與費曼圖的技術帶到在凝態物理的超流體氦液問題中。再往下翻閱年表,在 1957 的 Review of Modern Physics ,我們也能找到費曼的一篇「超流性與超導性」,談論那個時代理論物理學家對這兩種物質態的了解。

Read more

旋轉的玻色愛因斯坦凝聚態

物理學的理論描述是盡量得跟實驗呼應的,也因此,即便是今日大如強子對撞機的尖端實驗,源頭的想法也都是想藉由動量、角動量等在交互作用的前後關係,去獲得物理資訊。
本文就來略談,當我們轉動一個流體,更精確地說,一個玻色愛因斯坦凝聚態(Bose-Einstein Condensate),什麼事情會發生。

Read more

電磁對偶(S-Duality)與歐姆定律(下)

電磁場在三維空間中無疑問地遵守馬克斯威方程式,當電磁場逐漸靠近區域的邊界時,從馬克斯威方程式中可以推導出在邊界上電磁場跟表面電荷與電流應當遵守的關係。這些故事可以在標準的大學部電磁學課本中找到,在這邊,筆者打算犧牲一點嚴格性,以直覺上可以理解的方式直接講結論。

Read more

物理學中的對偶性(下)

在上集的討論中,我們約略介紹了「對偶」(duality)在物理學中,的意思:表面上看起來不同的兩個理論,本質上提供一樣的描述。最基本的例子是所謂伊辛模型(Ising model)在原晶格與對偶晶格上的對偶,以及電磁學馬克斯威方程式(Maxwell equations)在沒有電荷下電場磁場交換的對偶性。

Read more