能用同一種摻雜物能產生n型及p型的半導體嗎?
■半導體的摻雜(doping)因材料而異,一般來說要形成 n 型或 p 型需要不同的摻雜物(dopant),但氮化鎵(GaN)卻能用同一種摻雜物達成。
Read more■半導體的摻雜(doping)因材料而異,一般來說要形成 n 型或 p 型需要不同的摻雜物(dopant),但氮化鎵(GaN)卻能用同一種摻雜物達成。
Read more■在相同的區域放入越多的電子元件,代表同一支手機或電腦裝置能提供更強更快速的服務,因此縮小處理器中電子元件的尺寸是所有半導體大廠共同的目標。能依照國際半導體技術藍圖(ITRS)提升製造能力的公司將能獨佔市場,就像台積電排除三星公司,將在2017和2018年連續獨佔蘋果iPhone手機處理器。若要在未來的半導體節點持續保持領先,科技必須與時俱進。在這個10奈米節點以下的世代,各家製造商正積極尋求增加單位面積上電路效能的方法。
Read more■矽(Si)是一被廣泛運用的材料,從生活必備的手機電腦到太陽能電池皆仰賴矽工業的成熟,雖然人類對於其性質的掌握非常全面,但科學家還是持續探索其他可能性。
Read more■隨著科技的進步,電子裝置日漸縮小,功能卻能增加,這全都有賴半導體產業中的摩爾定律。然而,在傳統半導體架構中,尺寸上的縮小有物理上的極限,眼看摩爾定律的末日就要到了!因應這個問題,許多半導體研究機構致力研發新的科技,搭配上二維材料,部份地解決了縮小半導體尺度時會面臨的困難。然而這些材料和長久使用的半導體科技並不相容,無法真正投入應用。近日,科學家提出一種新穎的半導體製程,能夠製造原子級厚度的二維半導體。這個技術有望併入以矽為基礎、廣為使用的製程。
Read more■Intel的創辦人Gordon Moore在1965年神預測:「積體電路晶片上的電路數目,每隔18個月就會增加一倍。」積體光路是否會有相同的趨勢呢?
Read more■在光學通訊中開發新波長就等於開發新的通
Read more■光子在晶片內行走的同時,我們有沒有機會
Read more■如果翻翻最近幾年材料科學相關期刊,你會
Read more●5/16 黃彥餘處長主講:「智慧螢幕:
Read more講師|臺大電機系 闕志達教授 撰文|鄭兆
Read more■3D列印無疑是近年來最夯的科技之一,現
Read more作者|JOHN MARKOFF 編譯|劉
Read more