千變萬化的流體(一):一個做了90年的實驗

分享至

從躺在沙灘上,吹拂身體而過的微風,到吃果醬吐司時,苦苦等待滴落的黏稠果醬;光滑如鏡的湖水到構成平整路面的柏油(瀝青)。這些東西之間具有什麼共通性?又是什麼因素造成它們表現出來的性質,具有如此大的差異?

撰文/劉詠鯤

流體,泛指任何可以流動的物體,在我們的經驗中,主要包含了氣體和液體。例如充斥我們四周的空氣,以及隨處可見的水。但實際上,有些我們看似為固體的東西,其實也屬於流體,例如堅硬的玻璃。以上這些物質都落在流體的範疇。很顯然地,它們之間應該有某種決定性的差異,那便是它們的「黏滯性」。

●流體的黏滯性

從微觀的角度來看,黏滯性可以被看成是流體分子之間的吸引力強弱。我們可以想像眼前有一杯水和一坨麻糬。當我們對著它們吹一口氣時,從微觀的角度來說,便是在對它們表層的分子施力。水分子之間的吸引力比較弱,因此表層的水在受力後能夠自由移動,形成波紋;但麻糬分子之間的作用力較強,表層分子被其他分子緊緊抓住,因此不會形成明顯的運動。

麻糬看起來已經很黏了,但在黏滯性排行榜中,它可能還排不太進去。在生活中存在著一種黏滯係數非常大的流體,雖然可能大家都沒把他當成流體過,那便是:瀝青。為了量測瀝青的黏滯係數,物理學家進行了一個「持續時間最長」的實驗:「瀝青滴漏實驗」。到目前(2021年)為止,已經持續了90幾年。有興趣的讀者可以透過以下連結參與這個實驗的直播:http://www.thetenthwatch.com/feed/

圖一、瀝青滴落實驗。筆者於2021/8/17截圖自上述實驗直播。

若是讀者們沒有看出瀝青正在滴落,不用懷疑播放鍵是不是壞了。畢竟,根據實驗記錄,上一次滴落花了13年時間!這個實驗從1927年架設完畢,到目前為止,一共只有9滴瀝青滴下。以此估計,瀝青的黏滯係數會是水的千億倍。因此,瀝青大概會是黏滯係數排行榜榜首的候選人之一。

那若是我們看向另一端,黏滯係數很小的部分,可以想像當這樣的流體一旦受到外力,會非常容易流動。也許讀者們會好奇,有沒有可能黏滯係數為零呢?有,這種流體被稱作「超流體」。打個比喻,若是咖啡是種超流體,當我們加入奶精、糖攪拌完後,過半個小時來看,會發現它還在不停的旋轉,完全沒有停下來的跡象!這種流體具有非常獨特的性質,但由於其背後物理原理較為複雜(有數個諾貝爾物理獎都與此題目有關),筆者將此題目留至下一篇文章,再進行完整的介紹。接下來,我們先介紹如何描述流體的運動,也就是流體流動的類型:層流與紊流。

●層流與紊流

當我們想要描述流體時,可以將某一個特定時刻,流體中每一個點的瞬間速度以箭頭的方式標出,箭頭的方向指向該點的運動方向,箭頭長度則為運動速度大小。例如在一根細管中,若有水流過,可以預期水流會和管壁大致平行。此外,由於管壁的摩擦力,靠近管壁的流體速度會最慢,正中間的流體則最快,形成如圖二般的速度分布。

圖二、管內流體速度分布示意圖。

這種情形下,流體可以被看作一層一層、彼此不會互相混合且穩定的流動,稱為「層流」。雖然表面上看起來流體分子之間如排隊般,以非常整齊的隊伍前進,但是實際上,流體中存在各種各樣的不穩定性(流體中的不穩定性遍布日常生活中,我們會在超流體之後的文章和各位讀者介紹此現象。),會使得流體發生微小的擾動。若是流體的黏滯性夠大,這些微小的擾動便會被摩擦力消耗掉,使得整體看起來依舊穩定流動;但若是擾動足夠克服摩擦力,則不同層之間的流體會開始混合,形成如漩渦般的複雜結構,這種情況被稱為紊流。由以上描述可知,流體的運動會是哪種情況,會和擾動大小與流體黏滯性有關。在科學上,會透過流體的「雷諾數」來加以描述一個流體運動屬於哪種類型。

層流與紊流的現象在日常生活中其實非常普遍,我們不需要去計算雷諾數,也能夠從流體的外觀來大致分辨它是處於層流還是紊流。例如在欣賞壯麗的瀑布時(如圖三),會發現在水流落下之前,水的流動是相對平穩,顏色呈現深藍色;但當水開始下落形成瀑布時,水的流動變的不穩定,形成白色的水花。讀者們看到這裡,想必已經可以判斷它們分別對應的流體運動種類為何了。

圖三、尼加拉瓜瀑布風景圖。可看到水流在落下前流動較穩定,接近層流;落下後則轉為紊流,充滿白色的泡沫。圖片來源:Kevin Payravi

流體在日常中無處不在,流體性質的研究並非僅僅只是純科學的探索,它們早以走進每個人的生活中。例如飛機機翼如何設計增加浮力、高鐵車頭什麼形狀可以降低風阻、甚至容器瓶口要如何設計,才不會倒水時沿著瓶身留下…等等,這些都和流體的特性密切相關。流體,值得我們更深入的認識它!

 

參考資料:
[1] Laminar flow
[2] Pitch drop experiment

(Visited 857 times, 1 visits today)

分享至
views