淺談資料視覺化

分享至

淺談資料視覺化

講者/葉奕成(元智大學資訊工程學系助理教授)
彙整/《科學人》編輯團隊|整理自2019.08.11〈科創講堂.人工智慧〉

資料視覺化定義

葉奕成教授說明,維基百科[1]對資料視覺化做出了清楚的解釋「資料視覺化是透過視覺呈現或是互動手法,來加強人對於資料理解能力的一種手段。」;資料視覺化共分兩個分支:資訊視覺化以及科學視覺化,知名視覺化學者Tamara Munzner在論文[2]中如此定義,「如果視覺化成果圖表上的空間資訊,是根據某種資訊去產生的,就像是長條圖的長度、散佈圖點的位置等等,那這就應歸屬於資訊視覺化。反之,若資料天身內含空間資訊,並透過轉換後呈現,則是屬於科學視覺化的範疇」,其中資訊視覺化是本文所關注的主體。總而言之,資訊視覺化可以省去龐大的文字敘述、複雜的數據資訊,利用人類視覺能力的與視覺頻寬遠大於其他感知的特性。達到快速有效的理解,像是常用的樹狀結構圖、趨勢圖、長條圖、散佈圖等,就是一種資訊視覺化的成果。

資料視覺化生活實例

除了各種資訊圖表之外,捷運圖就是資訊視覺化的代表範例,葉奕成教授解釋,為了讓使用者對於乘車方向、間隔距離、轉乘資訊等能夠一目瞭然,捷運圖上所呈現的各站距離是差不多等距,並將車輛移動方向歸類為僅有八個方向與實際的地理位置失真,但是這種不符合真實狀況的地圖,卻能夠大幅減少視覺混亂,更有效率地讓使用者快速理解搭乘方向及跟目的地距離的站數。

還有學校自然課都被背過的元素週期表,將數百個化學元素透過排列位置,清楚表達各種化學元素之間的關係與特性,是科學研究重要的基礎工具,兼具呈現與探索兩個功能;又或者是天氣儀表板,用簡單、不需要經過學習的圖示表達氣溫、風向、降雨機率等資訊,使用者一看便能掌握天氣狀況。

資料視覺化的組成

《資料視覺化之理論賞析與實作》課程[3]講者-康仕仲教授,提出資料視覺化的跨領域學習包括Art、Psychology、Design、Engineering四大領域,葉奕成教授說明,並非把資料利用既有工具繪製成圖案,就是資料視覺化,這是一種高度客製化,為了特定目的而服務的資訊呈現,需要與心理學、設計學等結合,讓產出的視覺化圖示是符合可讀性、可理解性的目的,在設計上必須從目的出發去讓使用者可以同時達到探索問題、尋找問題並獲得答案。

資料視覺化正確觀念

葉奕成教授亦引用康仕仲教授在課程上所提出的提出四點資料視覺化易產生的誤解及改善方法:

第一、「不要為美而美」:美觀是基本要素,但過多的裝飾往往成為解讀資訊意義的雜訊,達成目的跟提高閱讀效率才是設計視覺化的核心思想。

第二、「資料視覺的設計是可以客觀評量的」:視覺化是透過運用視覺心理原則,以使用者為中心,運用各種驗證方式,將資料對應最合適的呈現方式,並應避免僅展現個人風格。

第三、「小心資訊過度簡化」:好的設計是善用人的視覺理解力,配合資料特性與使用條件,透過有效的工具提高人的理解效率。而非單純的將將複雜的資料進行縮減來達成目的。

第四、「切勿忽略資料視覺的難度」:造成投入過少資源,過於直觀的隨性選用方法,導致使用經驗不佳,閱讀效率無法提升甚至產生新的困擾。有效的視覺化方式必須深入了解使用者需求與資料、反覆測試驗證成效,才能設計出最佳解決方案。

 

參考資料

  1. https://en.wikipedia.org/wiki/Data_visualization
  2. Tamara Munzner. “Process and Pitfalls in Writing Information Visualization Research Papers” (Link)
  3. 資料視覺化之理論、賞析與實作 http://datasci.tw/2016/event/data_visualization_170311/

(本文由教育部補助「AI報報─AI科普推廣計畫」取得網路轉載授權)

(Visited 96 times, 1 visits today)

分享至
views