數學

條件句與對偶命題 (Conditional and contrapositive statements)

條件句與對偶命題 (Conditional and contrapositive statements)
臺北市立和平高中黃俊瑋教師

在數學上,有許多敘述句皆具有下列形式:\(P\) 蘊涵 \(Q\)

而它的意義即為:若 \(P\) 為真,則 \(Q\) 也必須為真 

此外,尚包含了其它與蘊涵相關的術語,例如:若 \(P\) 則 \(Q\) 、\(P\) 是 \(Q\) 的充分條件、\(P\) 唯若 \(Q\)、\(Q\) 若 \(P\) 以及 \(Q\) 是 \(P\) 的必要條件等,而這些術語的意義皆相同。例如,「若 \(n^2\) 為偶數,則 \(n\) 為偶數」、「若 \(x\) 與 \(y\) 皆為有理數,則 \(x+y\) 為有理數」以及「若 \(\Delta ABC\) 為直角三角形,則斜邊平方等於兩股之平方和」等,都是此類具蘊涵關係的敘述句。

一般而言,蘊涵關係包含了涉及真值(truth)的條件句與因果關係(causation)兩部份,我們以符號「\(P \Rightarrow Q\)」來表示 \(P\) 蘊涵 \(Q\) 的真值部份,並把具「\(P \Rightarrow Q\)」這種形式的句子,稱為條件表達式或簡稱為條件句。其中 \(P\) 的稱為前項或前件(antecedent), \(Q\) 則稱為後項或後件(consequent)。

西方行列式的發展:結語(The Development of Determinants in West: Concluding Remarks)

西方行列式的發展:結語
(The Development of Determinants in West: Concluding Remarks)

國立臺南第一高級中學林倉億老師

連結:西方行列式的發展:柯西的研究

行列式在西方萌芽後,在數學家們辛勤地澆灌、耕耘下,歷經了100多年,終於成熟。為行列式發展做出的數學家很多,〈西方行列式的發展〉系列文章只挑選了其中幾位作簡要的介紹,其他未寫到的數學家如拉格朗日 (Joseph Lagrange, 1736-1813)、拉普拉斯 (Pierre-Simon marquis de Laplace, 1749-1827)、比內 (Jacques Philippe Marie Binet, 1786-1856)、雅可比 (Carl Gustav Jacob Jacobi, 1804-1851)、凱萊 (Arthur Cayley, 1821-1895)、西爾維斯特 (James Joseph Sylvester, 1814-1897)……等等,都對20世紀之前的行列式發展,做出了不可抹滅的貢獻。

從歷史的發展,我們很清楚地看到,西方的行列式發展是從一次方程組求解開始的,數學家們發現用係數來表示方程組的解時,是有規律可循的。為了表示這規律,數學家們提出了不同的方式。

西方行列式的發展:柯西的研究 (The Development of Determinants in West: Cauchy’s Work)

西方行列式的發展:柯西的研究
(The Development of Determinants in West: Cauchy’s Work)

國立臺南第一高級中學林倉億老師

連結:西方行列式的發展:范德蒙的研究

雖然今日譯作「行列式」的詞 “determinantem”(即英文的“determinant”)是首次出現在高斯 (Carl Friedrich Gauss, 1777-1855) 於1801年出版的《算術研究》(Disquisitiones Arithmeticae) 中,但高斯是把它當作是字面意思來使用,即「決定的因素」,用以表示多元高次式的「判別式」,這和今日「行列式」的意義並不相同。

到了1812年,柯西 (Augustin-Louis Cauchy, 1789-1857) 在提交給法蘭西學院 (Institut de France) 的第二篇論文中(1815年出版),使用“déterminan”(即英文的“determinant”)來表示今日所稱的「行列式」,換言之,柯西才是使用「行列式」名詞的第一人。

在介紹柯西的行列式研究之前,我們必須先說明柯西在1812年之前的數學知識背景。首先,函數在19世紀是數學研究的熱門主題,柯西也是熱衷於各式函數的研究,他後來還對何謂函數下了定義,該定義已經十分接近今日函數的定義。其次,柯西十分熟悉范德蒙 (Alexandre-Theophile Vandermonde, 1735-1796)在行列式方面的研究(范德蒙並沒有使用行列式這名稱),在他1812年的論文中,多次提到了范德蒙的研究。然而,范德蒙的論文只是在呈現一種新的符號及其操作(參閱本網站〈西方行列式的發展:范德蒙的研究〉一文),並沒有函數的內涵。所以,柯西所做的,就是從函數的觀點來定義行列式。

西方行列式的發展:范德蒙的研究(The Development of Determinants in West: Vandermonde’s Work)

西方行列式的發展:范德蒙的研究
(The Development of Determinants in West: Vandermonde’s Work)

國立臺南第一高級中學林倉億老師

連結:西方行列式的發展:范德蒙的生平(2)

范德蒙1772年提交法國科學院的論文〈關於消去法的報告〉(Mémoire sur l’Élimination)是數學家首度將行列式運算作為研究主題的論文。范德蒙一開始就對他的符號給出了定義 (見圖一):

\(\left. {\frac{{\,\alpha \,}}{{\,a\,}}} \right|\frac{{\,\beta \,}}{{\,b\,}} = \begin{array}{*{20}{c}} \alpha \\ a \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\begin{array}{*{20}{c}} \beta \\ b \end{array}\; – \;\begin{array}{*{20}{c}} \alpha \\ b \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\begin{array}{*{20}{c}} \beta \\ a \end{array}\)

\(\left. {\left. {\frac{{\,\alpha \,}}{{\,a\,}}} \right|\frac{{\,\beta \,}}{{\,b\,}}} \right|\frac{{\,\gamma \,}}{{\,c\,}} = \begin{array}{*{20}{c}} \alpha \\ a \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\left. {\frac{{\,\beta \,}}{{\,b\,}}} \right|\frac{{\,\gamma \,}}{{\,c\,}}\; + \;\begin{array}{*{20}{c}} \alpha \\ b \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\left. {\frac{{\,\beta \,}}{{\,c\,}}} \right|\frac{{\,\gamma \,}}{{\,a\,}}\; + \;\begin{array}{*{20}{c}} \alpha \\ c \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\left. {\frac{{\,\beta \,}}{{\,a\,}}} \right|\frac{{\,\gamma \,}}{{\,b\,}}\)

\(\begin{array}{ll} \left. {\left. {\frac{{\,\alpha \,}}{{\,a\,}}} \right|\frac{{\,\beta \,}}{{\,b\,}}} \right|\left. {\frac{{\,\gamma \,}}{{\,c\,}}} \right|\frac{{\,\delta \,}}{{\,d\,}} &= \begin{array}{*{20}{c}} \alpha \\ a \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\left. {\left. {\frac{{\,\beta \,}}{{\,b\,}}} \right|\frac{{\,\gamma \,}}{{\,c\,}}} \right|\frac{{\,\delta \,}}{{\,d\,}}\; – \;\begin{array}{*{20}{c}} \alpha \\ b \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\left. {\left. {\frac{{\,\beta \,}}{{\,c\,}}} \right|\frac{{\,\gamma \,}}{{\,d\,}}} \right|\frac{{\,\delta \,}}{{\,a\,}}\; \\&+\;\begin{array}{*{20}{c}} \alpha \\ c \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\left. {\left. {\frac{{\,\beta \,}}{{\,d\,}}} \right|\frac{{\,\gamma \,}}{{\,a\,}}} \right|\frac{{\,\delta \,}}{{\,b\,}}\; – \;\begin{array}{*{20}{c}} \alpha \\ d \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\left. {\left. {\frac{{\,\beta \,}}{{\,a\,}}} \right|\frac{{\,\gamma \,}}{{\,b\,}}} \right|\frac{{\,\delta \,}}{{\,c\,}}\\ \;\;\;\; \vdots \\ \;\;\;\; \vdots \end{array}\)

西方行列式的發展:范德蒙的生平(2)(The Development of Determinants in West: Vandermonde’s Biography (2))

西方行列式的發展:范德蒙的生平(2)
(The Development of Determinants in West: Vandermonde’s Biography (2))

國立臺南第一高級中學林倉億老師

連結:西方行列式的發展:范德蒙的生平(1)

1772年范德蒙提交的第四篇論文,研究主題就是今日的行列式。范德蒙在這篇論文中,將行列式獨立成為一個數學研究對象(object),定義並推導相關性質後,再應用到一次方程組的解,也就是今日所謂的「克拉瑪公式」。在前人如萊布尼茲 (Gottfried Wilhelm Leibniz, 1646-1716)、克拉瑪 (Gabriel Cramer, 1704-1752)、貝祖 (Étienne Bézout, 1730-1783)等人的研究中都可發現今日行列式的運算,但那些運算都是依附在解方程組的過程之中,換言之,那些運算並沒有獨立成為數學的研究對象,被研究的主角是解方程組,而非這些運算。范德蒙正是因為這篇論文,才被推崇為行列式的創立者。那麼,究竟范德蒙在這篇論文之中是如何研究行列式的呢?這留待下一篇文章再作介紹。

范德蒙的研究並不侷限在數學之中,音樂和科學也有他的研究成果。例如1776年法國發生了一場嚴重的霜害,范德蒙就和數學家貝祖、化學家拉瓦錫 (Antoine-Laurent de Lavoisier, 1743-1794)作了一系列低溫的實驗,探討霜害產生的影響,並在1777年發表他們的研究結果。

西方行列式的發展:范德蒙的生平(1)(The Development of Determinants in West: Vandermonde’s Biography (1))

西方行列式的發展:范德蒙的生平(1)
(The Development of Determinants in West: Vandermonde’s Biography (1))

國立臺南第一高級中學林倉億老師

連結:西方行列式的發展:貝祖的研究

范德蒙 (Alexandre-Theophile Vandermonde) 1735年生於巴黎;巴黎,也是他在1796年告別人世之地。范德蒙的生日與忌日,很巧合地,都是台灣的國定假日,分別是2月28日與1月1日,因此,當我們在台灣放假時,除了原有的紀念意義外,也不妨遙想這位數學家的貢獻,讓放假增添一點數學風味。

范德蒙的父親是一位醫生,擁有不錯的社會地位與經濟收入。但子承衣缽卻不是這位父親的選擇,自范德蒙年幼時,他就希望也鼓勵范德蒙成為一位音樂家。在父親的鼓舞下,數學並不是范德蒙年輕時感興趣的對象,小提琴才是。

直到35歲那年,受到數學家貝爾丹 (Alexis Fontaine des Bertins, 1704-1771)的熱情感召,才激起范德蒙對數學研究的興趣。當年,他就以非會員的身份在法國科學院宣讀一篇數學論文,這可說是一份殊榮。或許是貝爾丹的感召與科學院的光環,激發了范德蒙的研究潛能,他在短短兩年內就提交了四篇論文給科學院,奠定了他在數學史中的地位。1771年,范德蒙就被正式選為科學院的一員。35歲之前對數學沒什麼貢獻的音樂家,竟在36歲成了國家科學院的會員,這恐怕是空前絕後的紀錄了!范德蒙在提交給科學院的四篇論文中,第一篇 (1771)提出了方程式之根的 \(m\) 次和公式,並證明了當 \(n\) 是小於 \(10\) 的質數時,\(x^n-1=0\) 的解可用根式表達。第二篇 (1771)則是討論棋盤上騎士漫遊的問題,這主題看起來沒什麼實際應用,比較像是趣味數學,但其內在數學結構卻是和今日的拓樸學有關。第三篇 (1772)的內容與今日的高中數學有頗多的連結,值得我們進一步了解。

從二項式定理到多項式定理 (2)

從二項式定理到多項式定理 (2)(From Binomial Theorem to Multinomial Theorem (2))
臺北市立第一女子高級中學蘇俊鴻老師

連結:從二項式定理到多項式定理(1)

在〈從二項式定理到多項式定理(1)〉中提到 \((x+y)^3\) 的 \(x^2y^1\) 項是如何產生呢?由於 \({\left( {x + y} \right)^3} = \left( {x + y} \right)\left( {x + y} \right)\left( {x + y} \right)\),故可看成在三個 \((x+y)\) 括號中,二個選 \(x\) 一個選 \(y\) 相乘而得,如此選取的方法數為 \(C_1^3\),所以 \(x^2y^1\) 項的係數是 \(C_1^3=3\)。

不過,也可換個方式來看 \(x^2y^1\) 項的產生。如圖一所示,選取二個選 \(x\)、一個 \(y\) 後,其情形等同於 \(2\) 個 \(x\) 與 \(1\) 個 \(y\) 的不盡相異物直線排列。因此,\(2\) 個 \(x\)、\(1\) 個 \(y\) 的直線排列可產生 \(x^2y^1\) 項,這樣的排列方法數為 \(\frac{3!}{1!2!}=3=C_1^3\),故 \(x^2y^1\) 項的係數是 \(C_1^3=3\)。

57318_p1

圖一\(~~~(x+y)^3\) 部分集項示意圖

從二項式定理到多項式定理 (1)

從二項式定理到多項式定理 (1)(From Binomial Theorem to Multinomial Theorem (1))
臺北市立第一女子高級中學蘇俊鴻老師

國中時學到乘法公式 \({(x + y)^2} = {x^2} + 2xy + {y^2}\),\({(x + y)^3} = {x^3} + 3{x^2}y + 3x{y^2} + {y^3}\),就在猜想 \({(x + y)^4},{(x + y)^5},\cdots,{(x + y)^n}\) 展開後的模樣。透過比對可看出 \((x+y)^n\) 的各項都是齊次,也就是說,展開的各項 \(x^ay^b\) 都會滿足 \(a+b=n\)。

因此,只要能掌握各項係數的規則,任意的自然數 \(n\),我們便能將 \((x+y)^n\) 的各項依 \(x\) 或 \(y\) 的升冪或降冪排出。國中老師採用的方法是將巴斯卡三角形畫出(圖一),一一對應,只要足夠耐心,就能達到任意的自然數 \(n\)。

57319_p1

圖一\(~~~\)巴斯卡三角形

行列式的應用

行列式的應用(Applications of Determinant)
國立臺南第一高級中學林倉億老師

連結:行列式的性質

以下介紹行列式在高中數學中主要的應用:

  1. 表示平面上三角形的面積
    \(\vec{OA}=(a_1,b_1)\)、\(\vec{OB}=(a_2,b_2)\),則 \(\Delta OAB\) 面積 \(= \frac{1}{2}\left| {\left| { \begin{array}{*{20}{c}} {{a_{ 1}}}&{{b_{ 1}}}\\ {{a_{ 2}}}&{{b_{ 2}}} \end{array} } \right|} \right|\)
    (\(\frac{1}{2}\) 乘以 \(\left| { \begin{array}{*{20}{c}} {{a_{ 1}}}&{{b_{ 1}}}\\ {{a_{ 2}}}&{{b_{ 2}}} \end{array} } \right|\) 的絕對值)。
    【證明】:
    由三角形面積公式 \(\Delta OAB = \frac{1}{2}\sqrt {{{\left| {\vec{OA}} \right|}^2}{{\left| {\vec{OB}} \right|}^2} – {{\left( {\vec{OA} \cdot\vec{OB}} \right)}^2}}\)
    可得
    \(\begin{array}{ll}\Delta OAB &= \frac{1}{2}\sqrt {({a_{ 1}}^2 + {b_{ 1}}^2)({a_{ 2}}^2 + {b_{ 2}}^2) – {{\left( {{a_{ 1}}{a_{ 2}} + {b_{ 1}}{b_{ 2}}} \right)}^2}} \\&= \frac{1}{2}\sqrt {{a_{ 1}}^2{b_{ 2}}^2 + {a_{ 2}}^2{b_{ 1}}^2 – 2{a_{ 1}}{a_{ 2}}{b_{ 1}}{b_{ 2}}} = \frac{1}{2}\sqrt {{{\left( {{a_{ 1}}{b_{ 2}} – {a_{ 2}}{b_{ 1}}} \right)}^2}} \\&= \frac{1}{2}\sqrt { {{\left| { \begin{array}{*{20}{c}} {{a_{ 1}}}&{{b_{ 1}}}\\ {{a_{ 2}}}&{{b_{ 2}}} \end{array} } \right|}^2}} = \frac{1}{2}\left| {\left| { \begin{array}{*{20}{c}} {{a_{ 1}}}&{{b_{ 1}}}\\ {{a_{ 2}}}&{{b_{ 2}}} \end{array} } \right|} \right|\end{array}\)
  2. 表示空間中兩不平行向量的外積
    \(\vec{OA}=(a_1,b_1,c_1)\),\(\vec{OB}=(a_2,b_2,c_2)\),則 \(\vec{OA}\) 與 \(\vec{OB}\) 的外積
    可記作 \(\vec{OA}\times\vec{OB}= ( \left| { \begin{array}{*{20}{c}} {{b_{ 1}}}&{{c_{ 1}}}\\ {{b_{ 2}}}&{{c_{ 2}}} \end{array} } \right| , \left| { \begin{array}{*{20}{c}} {{c_{ 1}}}&{{a_{ 1}}}\\ {{c_{ 2}}}&{{a_{ 2}}} \end{array} } \right| , \left| { \begin{array}{*{20}{c}} {{a_{ 1}}}&{{b_{ 1}}}\\ {{a_{ 2}}}&{{b_{ 2}}} \end{array} } \right| )\) 

行列式的性質

行列式的性質(Properties of Determinant)
國立臺南第一高級中學林倉億老師

連結:行列式的定義

在本文中,二階行列式的定義是 \(\left| { \begin{array}{*{20}{c}} {{a_{ 1}}}&{{b_{ 1}}}\\ {{a_{ 2}}}&{{b_{ 2}}} \end{array} } \right| = {a_{ 1}}{b_{ 2}} – {a_{ 2}}{b_{ 1}}\)

三階行列式的定義則是

\(\left| { \begin{array}{*{20}{c}} {{a_{ 1}}}&{{b_{ 1}}}&{{c_{ 1}}}\\ {{a_{ 2}}}&{{b_{ 2}}}&{{c_{ 2}}}\\ {{a_{ 3}}}&{{b_{ 3}}}&{{c_{ 3}}} \end{array} } \right| = {a_{ 1}} \cdot \left| { \begin{array}{*{20}{c}} {{b_{ 2}}}&{{c_{ 2}}}\\ {{b_{ 3}}}&{{c_{ 3}}} \end{array} } \right| – {a_{ 2}} \cdot \left| { \begin{array}{*{20}{c}} {{b_{ 1}}}&{{c_{ 1}}}\\ {{b_{ 3}}}&{{c_{ 3}}} \end{array} } \right| + {a_{ 3}} \cdot \left| { \begin{array}{*{20}{c}} {{b_{ 1}}}&{{c_{ 1}}}\\ {{b_{ 2}}}&{{c_{ 2}}} \end{array} } \right| = {a_{ 1}}{b_{ 2}}{c_{ 3}} – {a_{ 1}}{b_{ 3}}{c_{ 2}} + {a_{ 2}}{b_{ 3}}{c_{ 1}} – {a_{ 2}}{b_{ 1}}{c_{ 3}} + {a_{ 3}}{b_{ 1}}{c_{ 2}} – {a_{ 3}}{b_{ 2}}{c_{ 1}}\) 

我們稱直的為行,由左而右依序是第1行、第2行、…;稱橫的為列,由上而下依序是第1列、第2列、…。利用定義,很容易可以推出下列二階與三階行列式性質,證明就略去。

Pages