從複數到三角函數公式(I) (From complex number to trigonometric function formulas)
從複數到三角函數公式(I) (From complex number to trigonometric function formulas)
國立蘭陽女中陳敏晧教師
複數在數學各領域均有重大影響,本文章將討論如何以複數的形式來證明三角函數的相關公式,由於複數具有極坐標形式,可以將角度做旋轉、長度做伸縮變換,這是傳統幾何學在直角坐標平面難以突破的面向,因此,利用複數來證明三角函數公式往往會有意想不到的收穫,也常使學習者見識到數學之美!
本文將使用到歷史法國數學家棣美弗(Abraham de Moivre, 1667-1754)於1730年發表的棣莫弗公式,即若 \(z = r(\cos \theta+ i\sin \theta)\),則 \({z^n} = {r^n}(\cos n\theta+ i\sin n\theta ),n \in Z\)。
及歐拉(Leonhard Euler, 1707-1783)在1748年所發表的歐拉公式:\({e^{i\theta }} = \cos \theta+ i\sin \theta\)。



