導帶
導帶 (Conduction Band)
國立臺灣大學化學系 葉德緯
我們對於金屬材料的認識,最廣為人知的模型就是金屬原子間由金屬鍵 (metallic bond) 所形成的電子海 (electron sea) 模型了。電子海模型對金屬材料的導電性有不錯的解釋,不過若要對於金屬材料內部的電子能量分佈有更多的描寫,以及對於非導體材料例如半導體、絕緣體等有更好的解釋,通常都會引入能帶理論 (band theory)。
III-V族化合物半導體在光電元件中的應用
國立彰化師範大學光電科技研究所林祐仲教授/國立彰化師範大學洪連輝教授責任編輯
III-V族化合物半導體絕大部分屬於直接能隙半導體,不同於間接能隙之矽半導體。所謂直接能隙半導體則指電子從導帶底部掉落至價帶頂端,只產生能量的變化,此能量大約等於導帶底部與價帶頂端之能量差稱為該半導體之能隙,然而間接能隙半導體則指電子從導帶底部掉落至價帶頂端時,除能量的變化外,還包括晶體動量的改變,兩者之簡易能帶架構顯示於圖一。
發光二極體-歷史 〈LED-History〉
高雄市立高雄高級中學三年級徐維澤/高雄市立高雄高級中學物理科盧政良老師修改/國立彰化師範大學物理系洪連輝教授責任編輯
歷史 History
發現與發展 Discovery and development
二十世紀早期, Marconi實驗室的Henry Round首先注意到,半導體的接點可以發光。在1920年代中期,俄國的Oleg Vladimirovich Losev 獨立的發明的第一個發光二極體(LED),他的研究,即使廣佈於英國、德國、俄國的科學期刊,卻被忽視。1955年,美國無線電公司(the Radio Corporation of America)的Rubin Braunstein 指出砷化鎵 (GaAs)以及其他半導體合金能放出紅外線。1961年,德州儀器的實驗家 Bob Biard 以及 Gary Pittman發現砷化鎵 (GaAs),在施以電子流時,會釋放紅外光輻射。Biard和Pittman在成果上取得優先並取得紅外線LED的專利。1962年,通用電氣公司 (General Electric Company)而之後再依利諾大學香檳分校(the University of Illinois at Urbana-Champaign)的Nick Holonyak Jr. 開發出第一種實際應用的可見光LED,並且被視為「發光二極體之父」;而Holonyak的前研究生M. George Craford於1972年發明了第一個黃光的LED而且亮度是紅色或橘紅色LED的10倍。
半導體 〈Semiconductor〉(三)
高雄市立高雄女子高級中學一年級馬立宜、張晉瑜、周炯彤、陳君庭/高雄市立高雄女子高級中學物理科蔡宗賢老師修改/國立彰化師範大學洪連輝教授責任編輯
摻雜
能更有效的利用半導體特性,在設計電子元件上,加入雜質是很好的方式。這種在半導體中加入雜質的程序稱為摻雜(doping)。雜質或摻雜物的數量,加到一 個純質型半導體(intrinsic(pure) semiconductor)可以改變其導電性。摻雜過的半導體則時常被稱為外質型半導體(extrinsic semiconductor)。
半導體 〈Semiconductor〉(二)
高雄市立高雄女子高級中學一年級馬立宜、張晉瑜、周炯彤、陳君庭/高雄市立高雄女子高級中學物理科蔡宗賢老師修改/國立彰化師範大學洪連輝教授責任編輯
費米能階

在某一溫度下,那一個能階電子佔據的機率,遵守電子遵守的費米-狄拉克統計
。費米-狄拉克統計分佈與溫度有關,我們也定義出費米能量或者費米能階,來描述電子在不同能量下分佈的情形。在絕對零度下,電子從最低能量開始一直到所能 具有的最大能量,這個最大能量稱為費米能量或者費米能階,也就是說在絕對零度時,費米能階以下的能量均有電子佔據,費米能階以下每個能態電子存在的機率為 1,反過來說費米能階以上的能量,電子佔據的機率為0。在高溫時,費米能階被電子佔據的機率下落到了0.5。
半導體 〈Semiconductor〉
高雄市立高雄女子高級中學一年級馬立宜、張晉瑜、周炯彤、陳君庭/高雄市立高雄女子高級中學物理科蔡宗賢老師修改/國立彰化師範大學洪連輝教授責任編輯
半導體
半導體是一種導電性介於導體與絕緣體之間的固體材料,由於電性質的多樣性,使得它在工程科技上的應用上,顯得非常重要。目前的電子元件,從電腦、手機到數位 影音播放器,都是以半導體作為其主要成份的設計。矽是半導體在商業用途上主要元素,到目前為止已有無數半導體材料廣泛被使用。
概觀
半導體與絕緣體很相似,兩者主要的區別在於能隙的大小(電子脫離原子束縛成為自由電子所需之最小能量),絕緣體比半導體有較大的能隙。半導體因為有能隙,其 電子必須獲得足夠的能量,才能成為自由電子,在室溫,正如絕緣體一樣,其有較少的電子能獲得足夠的能量,從價帶跳到傳導帶成為自由電子,而能貢獻電流,因 此半導體與絕緣體,在未加電場的情形下,兩者電阻值是差不多的,也因為半導體比絕緣體有較小的能隙,所以除了溫度以外,另有其它的方法去控制它的電性。純 質型的半導體,可藉助我們稱為掺雜(doping)的過程,加入雜質而改變電性,我們可以大略的估計,在材料中貢獻電流的載子數目,從加入的雜質原子所提 供的自由電子與電洞(後面我們會觀念性的討論)的數目來決定,所以借助較大比例的掺雜,增加載子數目可提升到接近導體的電性,掺雜原子的種類不同,而使得 材料中電子與電洞的數目不同,而分為N型與P型半導體,將N型與P型接合的異質介面,會形成一內建電場,而導致自由電子與電洞能在這區域,受場的作用而移 動,這也是半導體元件在設計上很重要的依據。
電晶體 (Transistor)
國立台南女子高級中學物理科邱世寬老師/國立彰化師範大學洪連輝教授責任編輯
電晶體(transistor)是半導體元件(semiconductor device)之一,一般常用於電子訊號的放大(amplify)或者當成開關(swich)使用。電晶體也是建構電腦、行動電話(cellular phone)和其他現代電子裝置(electronic device)的基本積木。