矩陣的運算(Operations of Matrices)
國立臺南第一高級中學數學科林倉億老師
摘要:本文介紹矩陣的加法、減法、係數積,以及如何操作矩陣的乘法。
矩陣的加法與減法
當兩個矩陣的列數相等,行數也相等時,我們就稱它們為「同階矩陣」。
例如 $$M = \left[ \begin{array}{l} \begin{array}{*{20}{c}} 1&2&3 \end{array}\\ \begin{array}{*{20}{c}} 4&5&6 \end{array} \end{array} \right]$$ 與 $$N = \left[ \begin{array}{l} \begin{array}{*{20}{c}} {1{\rm{0}}}&{2{\rm{0}}}&{3{\rm{0}}} \end{array}\\ \begin{array}{*{20}{c}} {4{\rm{0}}}&{5{\rm{0}}}&{6{\rm{0}}} \end{array} \end{array} \right]$$ 同為 $$2\times 3$$ 階矩陣。
同階矩陣我們才能做加法與減法,方法很直觀,就是相同位置的元相加或相減,例如:
$$\begin{array}{ll}M + N &= \left[ \begin{array}{l} \begin{array}{*{20}{c}} 1&2&3 \end{array}\\ \begin{array}{*{20}{c}} 4&5&6 \end{array} \end{array} \right] + \left[ \begin{array}{l} \begin{array}{*{20}{c}} {1{\rm{0}}}&{2{\rm{0}}}&{3{\rm{0}}} \end{array}\\ \begin{array}{*{20}{c}} {4{\rm{0}}}&{5{\rm{0}}}&{6{\rm{0}}} \end{array} \end{array} \right]{\rm{ = }}\left[ \begin{array}{l} \begin{array}{*{20}{c}} {{\rm{1 + }}1{\rm{0}}}&{{\rm{2 + }}2{\rm{0}}}&{{\rm{3 + }}3{\rm{0}}} \end{array}\\ \begin{array}{*{20}{c}} {{\rm{4 + }}4{\rm{0}}}&{{\rm{5 + }}5{\rm{0}}}&{{\rm{6 + }}6{\rm{0}}} \end{array} \end{array} \right]\\&= \left[ \begin{array}{l} \begin{array}{*{20}{c}} {1{\rm{1}}}&{2{\rm{2}}}&{3{\rm{3}}} \end{array}\\ \begin{array}{*{20}{c}} {4{\rm{4}}}&{5{\rm{5}}}&{6{\rm{6}}} \end{array} \end{array} \right]\end{array}$$
$$\begin{array}{ll}M – N &= \left[ \begin{array}{l} \begin{array}{*{20}{c}} 1&2&3 \end{array}\\ \begin{array}{*{20}{c}} 4&5&6 \end{array} \end{array} \right] – \left[ \begin{array}{l} \begin{array}{*{20}{c}} {1{\rm{0}}}&{2{\rm{0}}}&{3{\rm{0}}} \end{array}\\ \begin{array}{*{20}{c}} {4{\rm{0}}}&{5{\rm{0}}}&{6{\rm{0}}} \end{array} \end{array} \right]{\rm{ = }}\left[ \begin{array}{l} \begin{array}{*{20}{c}} {{\rm{1}} – 1{\rm{0}}}&{{\rm{2}} – 2{\rm{0}}}&{{\rm{3}} – 3{\rm{0}}} \end{array}\\ \begin{array}{*{20}{c}} {{\rm{4}} – 4{\rm{0}}}&{{\rm{5}} – 5{\rm{0}}}&{{\rm{6}} – 6{\rm{0}}} \end{array} \end{array} \right] \\&=\left[ \begin{array}{l} \begin{array}{*{20}{c}} {\; – \;{\rm{9}}}&{ – {\rm{18}}}&{ – {\rm{27}}} \end{array}\\ \begin{array}{*{20}{c}} { – {\rm{36}}}&{ – {\rm{4}}5}&{ – {\rm{54}}} \end{array} \end{array} \right]\end{array}$$
用符號來表示就是 $$A = {\left[ {{a_{ij}}} \right]_{m \times n}}$$,$$B = {\left[ {{b_{ij}}} \right]_{m \times n}}$$,
則 $$A+B = {\left[ a_{ij}+b_{ij} \right]_{m \times n}}$$,$$A-B = {\left[ a_{ij}-b_{ij} \right]_{m \times n}}$$。