物理

投資學、核物理與隨機矩陣(二)

投資學、核物理與隨機矩陣(二)
蕭維翰

Figure0. 我們對角化了 100 個 500 * 500 的對稱矩陣,矩陣元素都是常態分佈 N(0,1)隨機產生的,我們將光譜的分佈畫成直方圖,發現這個分佈形成了半圓。

前文中筆者嘗試說服讀者,投資的策略是可以利用數學去優化的。但即便只針對隨機過程,依舊有太多工具可以選擇。本系列文將側重於隨機矩陣這個例子,日後有機會再聊聊其他的工具。而選擇隨機矩陣的原因乃在於這個數學分支一部分的重要貢獻來自於核物理的研究。

在本文中,我們將回顧隨機矩陣在核物理發展中產生的助力,並在下篇拉回近代,說明這些想法怎麼被使用到財務問題中。

時間拉回到 1950 年代,物理學家們在核物理的實驗中觀察到許多光譜線。這裡的光譜線的概念和高中化學的氫原子光譜是一樣的。簡而言之,薛丁格方程式會決定一個系統(比如說氫原子)允許具備的穩定狀態與這個狀態具備的能量有哪些,當系統從一個狀態跳到另一個狀態,兩狀態之間的能量差以電磁波的方式釋放並被實驗觀察到,便是光譜。

投資學、核物理與隨機矩陣(一)

投資學、核物理與隨機矩陣(一)
蕭維翰

物理學中的這些「奇技淫巧」真的只能拿來研究大自然嗎?事實上它們可能比我們想像的有用。

Figure1. 位於紐約曼哈頓的文藝復興避險基金總部。這個金融機構在業界便以物理學家和數學家的班底著名。(其創辦人也為知名數學家 J. Simons )(photo credit: 作者自攝)

近二三十年來有一個新起的學門叫做經濟物理(Econophysics)十之八九的人一聽到這個名字,大概會皺起眉頭詢問這兩個學科有什麼關係。從日常柴米油鹽的角度,這兩個社群固然是風馬牛不相及,但從定量科學的角度—

都是算數學,沒有什麼太大的差別。

當然不同社群的研究者切入問題的角度跟直覺都相去甚遠,但也部份地基於這個原因,經濟物理便著力於使用物理學中攻擊複雜系統的技巧來處理財金問題,近年來也有越來越多的財務著作發表在物理學評論 E (physical review E)或物理學評論通訊(physical review letter)。

測試波函數的意義與玻色版本的 Moore-Read 波函數

測試波函數的意義與玻色版本的 Moore-Read 波函數
蕭維翰

之前跟大家介紹的測試波函數不僅僅在霍爾物理中有用,即便在玻色愛因斯坦凝聚態的研究中也有貢獻。

圖片來源:作者自繪

有鑒於在先前幾篇已經提到了 Moore-Read 波函數的名字,筆者便想不如一鼓作氣再多說一點跟霍爾物理中測試波函數相關的事情。

要不要拿測試波函數來當科普題材一直筆者自己很掙扎的問題。在真正的物理研究中它們隨處可見,尤其在人們解析手法受限的強關聯問題中,如霍爾效應的物理。但另一方面它們卻也是極端技術性的,如果我不寫下任何方程式,我甚至很難跟大家說明定性上會發生什麼事,遑論是定量的結果。

但我覺得 Laughlin 波函數跟 Moore-Read 波函數這類的測試波函數,或許值得做一次嘗試性的討論。

v=5/2 量子霍爾態之謎(下)

v=5/2 量子霍爾態之謎(下)
蕭維翰

連結:v=5/2 量子霍爾態之謎(中)

誰是描述 v=5/2基態的波函數?Pf, aPf, 還是其他的可能性?

在前兩篇文章中我們首先複習了量子霍爾效應,指出 \(v=\frac{5}{2}\) 的特別之處,並且對於 \(v=\frac{5}{2}\) 的其中一個強力候選波函數 —— Pf  態進行了一些定性上的介紹。我們也指出,Pf 態所內建有趣的數學性質,也間接反饋到實驗的研究,強化了人們對真實系統 \(v=\frac{5}{2}\) 量子霍爾態的興趣。

在本文中,我們將討論現今與 Pf 分庭抗禮的候選人(們)。

首先讓我們回憶,在本系列第一篇文章中的一個等式

\(\displaystyle v=\frac{5}{2}=2+\frac{1}{2}\)

這個分解的意思是,在理論研究上,我們常常把這個態分解成兩個全填滿的蘭道階與一個半填滿的蘭道階。倘若蘭道階之間的交互作用可以省略,我們則可以把所有的物理投射到一個半填滿的蘭道階,這個問題在形式上就會接近其他在最低蘭道階的量子霍爾效應問題。

v=5/2 量子霍爾態之謎(中)

v=v=5/2 量子霍爾態之謎(中)
蕭維翰

連結:v=5/2 量子霍爾態之謎(上)

誰是描述v=5/2基態的波函數?曾經我們都快要相信就是 Pfaffian 波函數,直到 …… 。

Figure1. 2+1 維流體中可能的漩渦組態。(photo credit: 作者自繪)

誰是描述v=5/2基態的波函數?曾經我們都快要相信就是 Pfaffian 波函數,直到 …… 。

在前文中我們複習了量子霍爾效應,並在文章的下半段介紹 \(\frac{5}{2}\) 態,並說明為什麼他是個有趣的問題,並且用一個問題結尾 —— 我們有沒有一個類似 Laughlin 波函數的試驗波函數來代表這個狀態。而在本文中我們將更深入地討論這個懸問。

在這之前,筆者想先釐清前文的一段敘述。

v=5/2 量子霍爾態之謎(上)

v=5/2 量子霍爾態之謎(上)
蕭維翰

v=5/2到底發生了什麼事?這是研究霍爾效應的學者們近年來最關切的問題之一。

筆者曾用了三四篇文章來討論霍爾效應。從經典的整數量子霍爾效應(IQHE)、分數量子霍爾效應(FQHE)、複合費米子(Composite Fermion)到最近重新掀起討論的 \(v=\frac{1}{2}\) 費米液體態(Fermi Liquid)。在本文中筆者想延伸這些故事,討論另一個實驗上被觀測到的著名的偶數分母的量子霍爾態——\(v=\frac{5}{2}\),以及它所牽涉的謎團。

然而筆者必須先在此自白:量子霍爾效應並不算是最好的科普題材。儘管這個問題的組成元素很基本:電子、庫倫作用與垂直的磁場。但真的要進行定量說明的時候,我們很難避免討論一些比較生硬的概念,比如說磁通量附著(flux attachment)與測試波函數(trial wavefunction)。而且事實上除了一些拓樸性質,譬如電導率的係數 v,即便最前沿的計算也很難給出很好的解析結果。絕大多數我們必須倚賴數值計算,從而失去一些直覺。

物理學中的對偶性(下)

物理學中的對偶性(下)
蕭維翰

連結:物理學中的對偶性(上)

對偶性不只存在在前面的簡單例子中,其實我們也有費米子與玻色子、玻色子與玻色子、乃至於費米子與費米子間的對偶性。

圖一:水波中的孤波(photo credit: Wikipedia)

在上集的討論中,我們約略介紹了「對偶」(duality)在物理學中,的意思:表面上看起來不同的兩個理論,本質上提供一樣的描述。最基本的例子是所謂伊辛模型(Ising model)在原晶格與對偶晶格上的對偶,以及電磁學馬克斯威方程式(Maxwell equations)在沒有電荷下電場磁場交換的對偶性。

物理學中的對偶性(上)

物理學中的對偶性(上)
蕭維翰

無論在文學或科學的場合,對偶性的追求,都不僅是形式美的提升,而是對所欲描繪的物件做出更深刻表述的嘗試。

An illustration of magnetic monopole. Photo Credit: Heikka Valja. This photo is adopted from the new “Physics Professor David Hall and Team Observe Quantum-Mechanical Monopoles” on Amherst College official website. News Date: 4/30/2015.

筆者希望以這兩年火紅的對偶描述為量子霍爾效應作小結,但在這之前,有必要另開篇幅跟大家聊聊所謂的對偶是什麼。

對偶是漢語傳統文學的一種修辭技術,又稱對仗,常以字數相符的句子兩兩配成(若討論元曲,也可見三句配成的鼎足對)依據創作體裁的不同,在配對的格律要求會略有出入,但詞性相匹,聲韻相對是基本原則,一個雋永的例子是晏幾道一闋臨江仙的首對「夢後樓臺高鎖,酒醒簾幕低垂。」[1]

【物理世界】量子霍爾效應(四):迪拉克複合費米子

【物理世界】量子霍爾效應(四):迪拉克複合費米子
蕭維翰

連結:【物理世界】量子霍爾效應(三):複合費米子

這兩年物理學家提出了新的粒子電動對稱的理論解釋最低蘭道階(Landau Level)的物理,此新模型不再透過將磁通量附著到原粒子身上,而是藉由粒子漩渦對偶性,用更自然的方法去闡述一些實驗上觀測到的現象。

圖一:在最低蘭道階中的粒子電洞轉換。\(\nu\) 填滿態會被轉換到 \(1-\nu\) 填滿態,而 \(\nu =\frac{1}{2}\) 擁有粒子電洞的對稱性。

在前面幾篇文章中,我們介紹了量子霍爾效應的現象,並為分數與整數量子效應提供一些解釋。再者我們討論了 Jain 的複合費米子理論,指出實驗上觀測到的分數 \(\frac{1}{3},~\frac{2}{5},~\frac{3}{7},…\) 或 \(\frac{2}{3},~\frac{3}{5},…\) 等,都能被 Jain 序列所說明。在結尾處,我們指出 Jain 序列的極限是 \(\frac{1}{2}\),在那個狀況下,複合費米子看不到磁場,並形成一個費米液體。針對這個問題, HLR 是一個知名的有效理論。

【物理世界】量子霍爾效應(三):複合費米子

【物理世界】量子霍爾效應(三):複合費米子
蕭維翰

連結:【物理世界】量子霍爾效應(二):分數量子化與 Laughlin 波函數

在 Laughlin 波函數後,J. Jain 提出了複合費米子的概念,將整數量子霍爾效應與分數量子霍爾效應結合在一個框架下,並成為研究量子霍爾效應的一個典範。

本圖引自1990年6月22《科學》雜誌封面,courtesy of illustration T. S. Duff and T. Kovacs, AT&T Bell Laboratories

儘管 Laughlin 波函數從定量的角度提供了當時人們了解某些分數霍爾態的出發點,它並不稱得上是一個完整的「故事」。另一方面,它的成功也多侷限於 \(\frac{1}{3},~\frac{1}{5}\) 等分數,而不涵蓋其他如 \(\frac{2}{5},~\frac{3}{7}\) 等也在實驗中被發現的狀態。

Pages