機率歷史(The History of Probability)
機率歷史(The History of Probability)
國立蘭陽女中數學科陳敏晧老師/國立台灣師範大學數學系許志農教授責任編輯
自古以來,對於不可預知的事情,人們總是充滿著好奇,並且在好奇心的驅使下,往往產生了一些或對或錯的法則。姑且不論其動機為何,這些法則卻可能因此開創另一領域或學科,機率論(theory of probability)的發展便是如此。
機率歷史(The History of Probability)
國立蘭陽女中數學科陳敏晧老師/國立台灣師範大學數學系許志農教授責任編輯
自古以來,對於不可預知的事情,人們總是充滿著好奇,並且在好奇心的驅使下,往往產生了一些或對或錯的法則。姑且不論其動機為何,這些法則卻可能因此開創另一領域或學科,機率論(theory of probability)的發展便是如此。
貝葉斯和貝氏定理(3)(Thomas Bayes and Bayes’ Theorem (3))
臺北市立第一女子高級中學蘇俊鴻老師
連結:貝葉斯和貝氏定理(2)
接著,我們來看貝葉斯如何求出 \(P(F)\) 和 \(P(E\cap F)\)。他用了一個頗為獨特的想法,據以建立機率模型進行計算。如圖一,考慮水平擺放一個正方形的桌面或平面 \(ABCD\),將球 \(O\) 或 \(W\) 拋向桌面,並假設它們落在桌面上任何相等區域內的機率相同。
這時,假設球 \(W\) 先拋,過落點畫一條直線 \(ot\) 平行 \(AD\),分別交 \(CD\) 與 \(AB\) 於 \(t\) 和 \(o\)。接著,球 \(O\) 被拋擲 \(p+q=n\) 次,如果它一次單獨拋擲中落在 \(AD\) 和 \(ot\) 之間,稱為在一次試驗中發生了事件 \(M\)。
貝葉斯和貝氏定理(1)(Thomas Bayes and Bayes’ Theorem (1))
臺北市立第一女子高級中學蘇俊鴻老師
貝氏定理(Bayes’ Theorem)在高中數學的機率單元中出現,被當成是條件機率的重要議題,為人所知的是它的定理內容:
設 \(\left\{ {{A_1},{A_2}, \cdots ,{A_n}} \right\}\) 為樣本空間 \(S\) 的一組分割,\(B\) 為 \(S\) 的任一個事件,
若 \(P(B)>0\),則在事件 \(B\) 發生的情況下,事件 \(A_k\) 發生的機率為
\(\displaystyle P\left( {{A_k}|B} \right) = \frac{{P\left( {{A_k}} \right)P\left( {B\left| {{A_k}} \right.} \right)}}{{\sum\limits_{i = 1}^n {P\left( {{A_i}} \right)P\left( {B\left| {{A_i}} \right.} \right)} }},1\le k\le n\)
以及課本提及的應用,如品管檢驗、醫學檢定等。但多數人不知道貝氏是誰?什麼問題促使他發展出貝氏定理?貝氏定理在現今統計學上有著廣泛的應用,但學說提出之初,就如此為數學家和統計學家所擁護嗎?這些問題都是本文撰寫的動機。首先,就由托馬斯.貝葉斯(Thomas Bayes, 1702-1761)的生平開始說起,貝氏定理正是由他所提出的。
西方行列式的發展:結語
(The Development of Determinants in West: Concluding Remarks)
國立臺南第一高級中學林倉億老師
行列式在西方萌芽後,在數學家們辛勤地澆灌、耕耘下,歷經了100多年,終於成熟。為行列式發展做出的數學家很多,〈西方行列式的發展〉系列文章只挑選了其中幾位作簡要的介紹,其他未寫到的數學家如拉格朗日 (Joseph Lagrange, 1736-1813)、拉普拉斯 (Pierre-Simon marquis de Laplace, 1749-1827)、比內 (Jacques Philippe Marie Binet, 1786-1856)、雅可比 (Carl Gustav Jacob Jacobi, 1804-1851)、凱萊 (Arthur Cayley, 1821-1895)、西爾維斯特 (James Joseph Sylvester, 1814-1897)……等等,都對20世紀之前的行列式發展,做出了不可抹滅的貢獻。
從歷史的發展,我們很清楚地看到,西方的行列式發展是從一次方程組求解開始的,數學家們發現用係數來表示方程組的解時,是有規律可循的。為了表示這規律,數學家們提出了不同的方式。
西方行列式的發展:柯西的研究
(The Development of Determinants in West: Cauchy’s Work)
國立臺南第一高級中學林倉億老師
雖然今日譯作「行列式」的詞 “determinantem”(即英文的“determinant”)是首次出現在高斯 (Carl Friedrich Gauss, 1777-1855) 於1801年出版的《算術研究》(Disquisitiones Arithmeticae) 中,但高斯是把它當作是字面意思來使用,即「決定的因素」,用以表示多元高次式的「判別式」,這和今日「行列式」的意義並不相同。
到了1812年,柯西 (Augustin-Louis Cauchy, 1789-1857) 在提交給法蘭西學院 (Institut de France) 的第二篇論文中(1815年出版),使用“déterminan”(即英文的“determinant”)來表示今日所稱的「行列式」,換言之,柯西才是使用「行列式」名詞的第一人。
在介紹柯西的行列式研究之前,我們必須先說明柯西在1812年之前的數學知識背景。首先,函數在19世紀是數學研究的熱門主題,柯西也是熱衷於各式函數的研究,他後來還對何謂函數下了定義,該定義已經十分接近今日函數的定義。其次,柯西十分熟悉范德蒙 (Alexandre-Theophile Vandermonde, 1735-1796)在行列式方面的研究(范德蒙並沒有使用行列式這名稱),在他1812年的論文中,多次提到了范德蒙的研究。然而,范德蒙的論文只是在呈現一種新的符號及其操作(參閱本網站〈西方行列式的發展:范德蒙的研究〉一文),並沒有函數的內涵。所以,柯西所做的,就是從函數的觀點來定義行列式。
西方行列式的發展:范德蒙的研究
(The Development of Determinants in West: Vandermonde’s Work)
國立臺南第一高級中學林倉億老師
范德蒙1772年提交法國科學院的論文〈關於消去法的報告〉(Mémoire sur l’Élimination)是數學家首度將行列式運算作為研究主題的論文。范德蒙一開始就對他的符號給出了定義 (見圖一):
\(\left. {\frac{{\,\alpha \,}}{{\,a\,}}} \right|\frac{{\,\beta \,}}{{\,b\,}} = \begin{array}{*{20}{c}} \alpha \\ a \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\begin{array}{*{20}{c}} \beta \\ b \end{array}\; – \;\begin{array}{*{20}{c}} \alpha \\ b \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\begin{array}{*{20}{c}} \beta \\ a \end{array}\)
\(\left. {\left. {\frac{{\,\alpha \,}}{{\,a\,}}} \right|\frac{{\,\beta \,}}{{\,b\,}}} \right|\frac{{\,\gamma \,}}{{\,c\,}} = \begin{array}{*{20}{c}} \alpha \\ a \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\left. {\frac{{\,\beta \,}}{{\,b\,}}} \right|\frac{{\,\gamma \,}}{{\,c\,}}\; + \;\begin{array}{*{20}{c}} \alpha \\ b \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\left. {\frac{{\,\beta \,}}{{\,c\,}}} \right|\frac{{\,\gamma \,}}{{\,a\,}}\; + \;\begin{array}{*{20}{c}} \alpha \\ c \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\left. {\frac{{\,\beta \,}}{{\,a\,}}} \right|\frac{{\,\gamma \,}}{{\,b\,}}\)
\(\begin{array}{ll} \left. {\left. {\frac{{\,\alpha \,}}{{\,a\,}}} \right|\frac{{\,\beta \,}}{{\,b\,}}} \right|\left. {\frac{{\,\gamma \,}}{{\,c\,}}} \right|\frac{{\,\delta \,}}{{\,d\,}} &= \begin{array}{*{20}{c}} \alpha \\ a \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\left. {\left. {\frac{{\,\beta \,}}{{\,b\,}}} \right|\frac{{\,\gamma \,}}{{\,c\,}}} \right|\frac{{\,\delta \,}}{{\,d\,}}\; – \;\begin{array}{*{20}{c}} \alpha \\ b \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\left. {\left. {\frac{{\,\beta \,}}{{\,c\,}}} \right|\frac{{\,\gamma \,}}{{\,d\,}}} \right|\frac{{\,\delta \,}}{{\,a\,}}\; \\&+\;\begin{array}{*{20}{c}} \alpha \\ c \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\left. {\left. {\frac{{\,\beta \,}}{{\,d\,}}} \right|\frac{{\,\gamma \,}}{{\,a\,}}} \right|\frac{{\,\delta \,}}{{\,b\,}}\; – \;\begin{array}{*{20}{c}} \alpha \\ d \end{array}\;\begin{array}{*{20}{c}} {}\\ . \end{array}\;\left. {\left. {\frac{{\,\beta \,}}{{\,a\,}}} \right|\frac{{\,\gamma \,}}{{\,b\,}}} \right|\frac{{\,\delta \,}}{{\,c\,}}\\ \;\;\;\; \vdots \\ \;\;\;\; \vdots \end{array}\)
西方行列式的發展:范德蒙的生平(2)
(The Development of Determinants in West: Vandermonde’s Biography (2))
國立臺南第一高級中學林倉億老師
1772年范德蒙提交的第四篇論文,研究主題就是今日的行列式。范德蒙在這篇論文中,將行列式獨立成為一個數學研究對象(object),定義並推導相關性質後,再應用到一次方程組的解,也就是今日所謂的「克拉瑪公式」。在前人如萊布尼茲 (Gottfried Wilhelm Leibniz, 1646-1716)、克拉瑪 (Gabriel Cramer, 1704-1752)、貝祖 (Étienne Bézout, 1730-1783)等人的研究中都可發現今日行列式的運算,但那些運算都是依附在解方程組的過程之中,換言之,那些運算並沒有獨立成為數學的研究對象,被研究的主角是解方程組,而非這些運算。范德蒙正是因為這篇論文,才被推崇為行列式的創立者。那麼,究竟范德蒙在這篇論文之中是如何研究行列式的呢?這留待下一篇文章再作介紹。
范德蒙的研究並不侷限在數學之中,音樂和科學也有他的研究成果。例如1776年法國發生了一場嚴重的霜害,范德蒙就和數學家貝祖、化學家拉瓦錫 (Antoine-Laurent de Lavoisier, 1743-1794)作了一系列低溫的實驗,探討霜害產生的影響,並在1777年發表他們的研究結果。
西方行列式的發展:范德蒙的生平(1)
(The Development of Determinants in West: Vandermonde’s Biography (1))
國立臺南第一高級中學林倉億老師
范德蒙 (Alexandre-Theophile Vandermonde) 1735年生於巴黎;巴黎,也是他在1796年告別人世之地。范德蒙的生日與忌日,很巧合地,都是台灣的國定假日,分別是2月28日與1月1日,因此,當我們在台灣放假時,除了原有的紀念意義外,也不妨遙想這位數學家的貢獻,讓放假增添一點數學風味。
范德蒙的父親是一位醫生,擁有不錯的社會地位與經濟收入。但子承衣缽卻不是這位父親的選擇,自范德蒙年幼時,他就希望也鼓勵范德蒙成為一位音樂家。在父親的鼓舞下,數學並不是范德蒙年輕時感興趣的對象,小提琴才是。
直到35歲那年,受到數學家貝爾丹 (Alexis Fontaine des Bertins, 1704-1771)的熱情感召,才激起范德蒙對數學研究的興趣。當年,他就以非會員的身份在法國科學院宣讀一篇數學論文,這可說是一份殊榮。或許是貝爾丹的感召與科學院的光環,激發了范德蒙的研究潛能,他在短短兩年內就提交了四篇論文給科學院,奠定了他在數學史中的地位。1771年,范德蒙就被正式選為科學院的一員。35歲之前對數學沒什麼貢獻的音樂家,竟在36歲成了國家科學院的會員,這恐怕是空前絕後的紀錄了!范德蒙在提交給科學院的四篇論文中,第一篇 (1771)提出了方程式之根的 \(m\) 次和公式,並證明了當 \(n\) 是小於 \(10\) 的質數時,\(x^n-1=0\) 的解可用根式表達。第二篇 (1771)則是討論棋盤上騎士漫遊的問題,這主題看起來沒什麼實際應用,比較像是趣味數學,但其內在數學結構卻是和今日的拓樸學有關。第三篇 (1772)的內容與今日的高中數學有頗多的連結,值得我們進一步了解。
和算家求橢圓周長的方法(二)
(Wasan’s method of finding the formula of the circumference of an ellipse Ⅱ)
臺北市立和平高中教師黃俊瑋
如前文〈和算家求橢圓周長的方法(一)〉所述,和田寧是最早造出正確橢圓周長展開式的數學家,然而,他的主要著作皆在西元1836年的一場大火中付之一炬,因此,我們只得以他授予的弟子們的傳書,一窺他求解橢圓周長的方法。
和田寧的弟子小出兼政,依據和田寧所授之傳書編成《圓理算經》,該書〈上卷〉的第五部份裡,提出了求橢圓周長問題:「譬今有如圖橢圓,只言長徑若干,短徑若干,問得周長術如何?」作者造橢圓周長公式的過程中,主要是利用分割求和的積分方式,輔以各類「圓理表」。以下,筆者進一步說明並分析他求橢圓周長的過程。
假設橢圓之長軸長為 \(2a\)、短軸長為 \(2b\),首先,小出兼政先利用「截弦順法對橢圓之長軸作分割,配對得到 \(n\) 段,讀者請參考圖一,以分割成配對 \(5\) 等分的情況為例作說明。此分割法是以左右配對 \(5\) 等分割的方式,對橢圓之長軸作分割,使其滿足:
\(\overline{{A_1}{B_1}}=\overline {{A_1}{A_2}}+\overline {{B_1}{B_2}}=\overline{{A_2}{A_3}}+\overline{{B_2}{B_3}}= \overline{{A_3}{A_4}}+\overline{{B_3}{B_4}}=\overline{{A_4}A}+\overline{{B_4}B}=\frac{{2a}}{5}\)
這和現代教科書中所用的等分割方式有所不同。