整數

集合的元素個數:無窮集合(一) The cardinality of a set: Infinite sets I

集合的元素個數:無窮集合(一) The cardinality of a set: Infinite sets I
臺北市立和平高中教師黃俊瑋

連結:集合的元素個數:有限與無限

無窮集合元素個數相等的定義如下:

若兩個集合(無窮集合)之間存在一一對應關係,則這兩個集合的元素個數相等。

我們可藉此發現許多違反直覺的例子。首先,就直觀上來看,正整數的個數比正偶數的個數來得多,而正整數的個數也比完全平方數來得多,不過,我們依上述定義實際作對應與比較後,會發現:

\(\begin{array}{lllllll} 1&2&3&4&5&\cdots&n\\\updownarrow&\updownarrow&\updownarrow&\updownarrow&\updownarrow&&\updownarrow\\2&4&6&8&10&\cdots&2n\end{array}\)

換言之,正整數的個數與正偶數的個數一樣多。類似地,我們也會發現:

\(\begin{array}{lllllll} 1&2&3&4&5&\cdots&n\\\updownarrow&\updownarrow&\updownarrow&\updownarrow&\updownarrow&&\updownarrow\\1^2&2^2&3^2&4^2&5^2&\cdots&n^2\end{array}\)

因此,正整數的個數與平方數的個數一樣多。這是不是既違反直覺又不可思議呢?