等差數列 (Arithmetic Progression)
等差數列 (Arithmetic Progression)
國立蘭陽女中陳敏晧教師
一連串有次序的數,稱為數列(sequence)。其中的數,稱為項(term);第一個項,稱為首項,以 \(a_1\) 表示;第 \(n\) 個項以 \(a_n\)表示。若數列中每一個後項減去前項的值固定時,則稱此數列為等差數列(Arithmetic Progression,簡寫為AP),我們將此固定差值稱為公差(common difference),以 \(d\) 表示。
因為 \(a_2-a_1=d\),所以 \(a_2=a_1+d\)。又 \(a_3-a_2=d\),所以 \(a_3=a_2+d=a_1+2d\)。我們很容易推得 \(a_n=a_1+(n-1)d,~n\in \mathbb{N}\)。進一步可得 \({a_n} = {a_m} + (n – m)d\),其中 \(n,m\in \mathbb{N}\)。
