半角公式

半角公式(Half-Angle Formulas)

半角公式(Half-Angle Formulas)
臺北市立第一女子中學數學科蘇俊鴻老師

一般說來,半角公式的推導常是透過倍角公式。由於

\(\cos 2\alpha= {\cos ^2}\alpha- {\sin ^2}\alpha= 2{\cos ^2}\alpha-1=1-2{\sin^2}\alpha\)

因此,

\({\sin^2}\alpha=\frac{{1 – \cos 2\alpha}}{2},{\cos^2}\alpha=\frac{{1+\cos 2\alpha}}{2}\)

令 \(\theta=2\alpha\Rightarrow \alpha=\frac{\theta}{2}\) 代入,即得

\(\sin \frac{\theta }{2} =\pm\sqrt {\frac{{1 -\cos\theta}}{2}} ,\cos\frac{\theta}{2} = \pm\sqrt{\frac{{1 + \cos \theta}}{2}} \)

其中 \(\pm\) 依 \(\frac{\theta}{2}\) 所在的象限決定。至於倍角公式,則是由和角公式推得。
換言之,公式推導的順序是和角公式→倍角公式→半角公式。

然而,當我們檢視托勒密天文學集大成的著作《The Almagest》,他在為製作弦表所提出的一系列命題中,半角公式竟然比和角公式還要更早提出!

半角公式(II)

半角公式(II) (Half-angle Formulas)
國立蘭陽女中數學科陳敏晧老師

連結: 半角公式(I)

在1580年左右,法國代數學家維塔(François Viète,1540-1603)

曾經提出一個漂亮的正切函數半角公式:$$\displaystyle\frac{{a + b}}{{a – b}} = \frac{{\tan \left( {\frac{{A + B}}{2}} \right)}}{{\tan \left( {\frac{{A – B}}{2}} \right)}}$$。

證明的方法是利用正弦定理及和差化積公式:

$$\begin{array}{ll}\displaystyle\frac{{a + b}}{{a – b}} &=\displaystyle \frac{{2R\sin A + 2R\sin B}}{{2R\sin A – 2R\sin B}} = \frac{{\sin A + \sin B}}{{\sin A – \sin B}} \\&=\displaystyle \frac{{2\sin \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A – B}}{2}} \right)}}{{2\sin \left( {\frac{{A – B}}{2}} \right)\cos \left( {\frac{{A + B}}{2}} \right)}}=\displaystyle \frac{{\sin \left( {\frac{{A + B}}{2}} \right)/\cos \left( {\frac{{A + B}}{2}} \right)}}{{\sin \left( {\frac{{A – B}}{2}} \right)/\cos \left( {\frac{{A – B}}{2}} \right)}} \\&=\displaystyle \frac{{\tan \left( {\frac{{A + B}}{2}} \right)}}{{\tan \left( {\frac{{A – B}}{2}} \right)}}\end{array}$$

半角公式(I)

半角公式(I) (Half-angle Formulas)
國立蘭陽女中數學科陳敏晧老師

三角函數中的半角公式:

\(\displaystyle\sin\frac{\theta}{2}=\pm \sqrt{\frac{{1-\cos\theta }}{2}}\) (\(\pm\) 號依 \(\displaystyle\frac{\theta}{2}\)在第幾象限而定)

\(\displaystyle\cos\frac{\theta}{2}=\pm \sqrt{\frac{{1+\cos\theta }}{2}}\) (\(\pm\) 號依 \(\displaystyle\frac{\theta}{2}\)在第幾象限而定)

\(\displaystyle\tan \frac{\theta }{2}=\pm\sqrt {\frac{{1-\cos \theta }}{{1+\cos \theta }}}= \frac{{\sin \theta }}{{1+ \cos \theta }}= \frac{{1- \cos \theta }}{{\sin\theta }}= \frac{{1+\sin \theta- \cos \theta }}{{1+ \sin \theta+ \cos \theta }}\)

上述半角公式的證明是根據二倍角公式:\(\cos 2\alpha= 2{\cos^2}\alpha- 1= 1- 2{\sin^2}\alpha\),

令 \(2\alpha=\theta\) 即 \(\displaystyle\alpha=\frac{\theta}{2}\),移項得 \(\displaystyle 2{\cos ^2}\frac{\theta }{2} = 1+\cos\theta ,2{\sin ^2}\frac{\theta }{2} = 1 -\cos \theta\),

再移項及開平方得 \(\displaystyle\sin \frac{\theta }{2}=\pm\sqrt{\frac{{1-\cos\theta }}{2}}\),\(\displaystyle\cos \frac{\theta }{2}=\pm\sqrt{\frac{{1+\cos\theta }}{2}}\),

將兩式相除得 \(\displaystyle\tan \frac{\theta }{2} = \frac{{\sin \frac{\theta }{2}}}{{\cos \frac{\theta }{2}}}=\frac{{\pm\sqrt {\frac{{1 -\cos \theta }}{2}} }}{{\pm\sqrt {\frac{{1 + \cos \theta }}{2}} }} =\pm\sqrt {\frac{{1 – \cos \theta }}{{1 + \cos \theta }}}\),