能源技術

再生能源、綠能

正向滲透

正向滲透(Forward Osmosis)
國立臺灣大學環境工程學研究生 許中俊

滲透是早已被人們熟知且廣泛利用的物理現象,其可以定義為經由滲透壓差的驅動,使水通過一個選擇性半透膜的淨移動作用,而半滲透膜顧名思義,能夠在排除其他溶質分子與離子的同時讓水通過。如今許多領域,像是水處理、食品加工、發電甚至控制藥物釋放都能夠利用滲透現象來達到,而日常生活中最常見例子的就是逆滲透 (Reverse osmosis, RO) 淨化水質,對進流水施以額外的水壓,使水分子由滲透壓高傳輸至薄膜滲透壓低的另一側生成純水的方法;相反地,正向滲透 (Forward osmosis, FO) 即直接利用溶液相對之滲透壓(由低至高)來驅動水的傳輸,使進流水濃縮、稀釋高濃度的提取液 (Draw solution)。

太陽光電新衣—鈣鈦礦太陽能電池

太陽光電新衣—鈣鈦礦太陽能電池(Solar photovoltaic New Clothes: Perovskite Solar Cells)
國立臺灣大學環境工程研究生 游得君

臺灣地狹人稠,自然資源短缺,能源供給 99% 以上仰賴進口,隨著全球的經濟總量和規模逐漸擴大,傳統廣泛使用的化石燃料日益匱乏,再加上過度使用化石燃料造成全球暖化氣候變遷問題的加劇,近年來政府一直再尋求可再生的綠色能源,其中太陽能光電產業為極具發展潛力的替代性能源之一。

以生命週期評估方法計算農業行為的環境衝擊

以生命週期評估方法計算農業行為的環境衝擊(Using Life Cycle Assessment to Evaluate Environmental Impact of Planting)
國立臺灣大學環境工程學研究所 袁光宇

我們吃的食物種類上百種,每種食物都可以透過不同的種植方式產出、運輸,最後擺上餐桌成為美味佳餚,你曾經想過餐桌上的米飯怎麼來的嗎?你知道每天吃的蔬菜會對全球暖化造成多少影響嗎?不同的種植方式與不同的作物對環境造成的影響也有所不同,要如何計算這些環境衝擊,讓農民在作物或種植方法的選擇上,既能兼顧經濟效益,又能減少環境破壞,也讓我們在選擇環境友善的食物上有更清楚明確的選擇呢?

核能與太陽能發電碳排放之生命週期評估

核能與太陽能發電碳排放之生命週期評估(Using Life Cycle Assessment to Evaluate Carbon Dioxide Emissions from Solar Electric and Nuclear Power)
國立臺灣大學環境工程學研究所 許桓瑜

發電方式的選擇須顧及許多面向,包括國家政策、經濟效益、穩定性、運轉操作、以及環境問題等,在現今溫室氣體減量的國際趨勢下,各種發電方式的二氧化碳排放量便顯得相當重要。其中太陽能發電與核能發電因為運轉過程中不會產生任何二氧化碳,被認為是無碳的發電方式。然而,如以本研究群許桓瑜先前所介紹之生命週期評估方法 (life cycle assessment, LCA) 檢視,太陽能發電與核能發電從原料、製造、營運、廢棄處理等各階段,皆會排放二氧化碳及其他溫室氣體,本文將討論利用生命週期評估方法計算核能發電及太陽能發電的碳排放衝擊。

以生命週期方法分析風力及水力發電的溫室氣體排放

以生命週期方法分析風力及水力發電的溫室氣體排放(Using Life Cycle Assessment to Evaluate Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power)
國立臺灣大學環境工程學研究所 林立涵

再生能源種類繁多,應如何選擇對環境較為友善的再生能源呢?生命週期評估是目前最普遍使用的分析方法,如本研究群許桓瑜於先前於《生命週期評估》(2013) 文章所介紹,生命週期評估的概念應用於環境管理上,可追溯至 1969 年,美國可口可樂公司對其飲料容器材質生命週期之能源耗用量進行評估。發展至現今,可將生命週期評估分為四大步驟:(1) 目的與範疇界定, (2) 盤查分析,(3) 衝擊評估,及 (4) 結果闡釋,計算各種可行方案的衝擊量後,可做為方案的比較基礎。

以生命週期評估觀點分析生質能之環境效益

以生命週期評估觀點分析生質能之環境效益(Using Life Cycle Assessment to Evaluate the Environmental Benefit of Bioenergy)
國立臺灣大學環境工程學研究所 黃郁揚

全球暖化的議題自京都議定書簽署以來逐漸受到重視,各國政府均積極推動綠色再生能源的發展。推動過程中為了進行全面的二氧化碳盤查,生命週期評估是目前最常被使用的評估工具,以便納入再生能源生產過程中所有可能的二氧化碳排放,分析採用再生能源對減緩全球暖化所產生的效益。詳細之生命週期評估程序可參照本研究群許桓瑜 (2013) 於科學Online所發布的介紹專文《生命週期評估 (Life cycle assessment, LCA)》

淺談台灣新能源的發展與挑戰

淺談台灣新能源的發展與挑戰(The Development and Challenge of Renewable Energy in Taiwan)
國立臺灣大學土木工程學系 連嘉玟

目前台灣能源來源仍以火力發電為主,目前臺灣火力發電量占比達 76%,其中燃煤 37.6%、燃油 2.8%、燃氣 32.4%、汽電共生 3.2%,再生能源加上水力占比為 4.0%,抽蓄水力 1.4%,核能則為 18.6% [5]。面對全球大量石油開採,能源危機步步接近,各國皆面臨能源轉型,使用再生新能源也成為世界能源發展的大趨勢。在此篇將介紹五種新興乾淨能源:風力發電、海洋能發電、生質能發電、太陽能發電、地熱發電,其中太陽能發電又區分為光電能與熱能。(圖一)

洋流發電在臺灣的發展

洋流發電在臺灣的發展 (Ocean Current Energy Development in Taiwan)
國立臺灣大學土木工程學系 連嘉玟

為什麼要發展洋流發電?

臺灣目前主要的發電多仰賴火力發電,包含燃煤、燃油、燃氣,以及汽電共生等方式。而這類的發電方式不僅需要仰賴進口,發電過程中除了排放二氧化碳,也會排放許多汙染環境、影響植物之生長及人體健康的物質,例如硫氧化物、氮氧化物等。海流發電是目前政府有意研究的乾淨能源,雖然尚在評估開發階段,但希望未來能透過此發電方式減少對環境造成的汙染,並改善臺灣的發電品質。

OLED 照明技術

OLED 照明技術 (The Organic Light Emitting Diode Lighting Technology)
工業技術研究院—綠能與環境研究所研究員 江昌霖

想像一下未來的燈可以薄得像一張紙,將燈片彎曲後,可隨意張貼在牆壁或室內的任何一個角落而成為一張發光壁紙。這樣的技術正在快速發展中,稱為有機發光二極體 (Organic Light Emitting diode, OLED) 照明技術。

OLED 發光源一般是面光源形式,製作成燈具時並不需要會損耗光線的反射機構而具有節能特性,亦具有高演色性 (Color rendering index, CRI)、無眩光、透明、輕薄、可彎曲等眾多優點,因此吸引國際大廠競相投資發展。OLED 照明兼具環保與低耗能的優勢,在龐大資源的挹注下使得發光效率進步得相當快,未來將更普遍應用於室內節能照明並節省大量照明用電。

認識低溫差熱電轉換系統

認識低溫差熱電轉換系統(Introduction for low-grade thermoelectric energy conversion system)
工業技術研究院綠能與環境研究所資深工程師 謝瑞青

在十八世紀的第一次工業革命中,蒸汽機成為主要的發明,而朗肯循環 (Rankine Cycle) 是蒸汽機中的熱力循環系統之一。朗肯循環是利用熱能將水煮沸成高壓蒸汽,高壓蒸汽推動渦輪機,渦輪機再轉動發電機,最後實現熱電轉換功能。

有機朗肯循環 (Organic Rankine Cycle) 技術來自於朗肯循環,不同之處在於工作流體。郎肯循環的工作流體為水,而有機朗肯循環所使用的工作流體則為冷媒,水與冷媒的特性有極大不同(性質比較如表一),主要不同為冷媒沸點較低,當熱源的溫度比較低 (≤ 90 ℃),無法使水產生相變化,或是水蒸汽的乾度不足時(乾度為 0 時表液態,乾度為 1 時表全部為蒸汽,介於 0 與 1 之間表液態與氣態共存),易汽化的低沸點冷媒便可確保在熱源溫度較低時,仍可獲得足夠的蒸汽壓力推動渦輪機。

Pages