物質狀態

理想氣體和凡得瓦爾氣體的比較-以二氧化碳為例

理想氣體和凡得瓦爾氣體的比較-以二氧化碳為例
(Comparison of ideal gas and van der Waals gases – a case study in carbon dioxide)

國立臺灣師範大學化學系兼任教師 邱智宏

初學物理化學 (physical chemistry) 時,理想氣體 (perfect gas) 如影隨形,無時不在,隨時出現在各個不同的章節。由於理想氣體假設其氣體粒子不具有體積、粒子間没有吸引力、彼此間的碰撞為彈性碰撞,因此其 \(p \cdot V \cdot T\) 間的關係,可以簡潔的以 \(pV=nRT\) 加以描述。

然而真實氣體究竟佔有體積,彼此具有吸引力,碰撞時也非彈性碰撞,因此其許多特性和理想氣體不一樣,例如低溫高壓下,真實氣體大大偏離理想氣體、能被液化、有特殊的臨界點 (critical point)⋯ 等。歷來許多科學家總希望由簡潔的理想氣體方程式出發,企圖能找到一個足以說明真實氣體的方程式,其中凡得瓦爾方程式 (van der Waals equation) 就是一個很好的例子,在數學上雖然稍微複雜一些,但卻能解釋很多真實氣體的現象。

本文試著比較二種方程式的異同,並由其相異之處,解釋為何凡得瓦爾方程式更能接近真實氣體的理由。另外,以二氧化碳為例,觀察其相圖的變化情形,並說明凡得瓦爾方程式可信及不足之處。

熔點以下的水會自發性結成冰的原因-環境熵和系統熵一樣重要(二)

熔點以下的水會自發性結成冰的原因-環境熵和系統熵一樣重要(二)
The reason of water would spontaneously turn into ice when the temperature is below the melting point – the surrounding entropy is as important as system entropy (II)

國立臺灣師範大學化學系兼任教師 邱智宏

熔點以下的水會自發性結成冰的原因 (一)

二、不同室溫下,溫度和室溫相等的水會安定存在或轉變成冰

由上面的例題得知,常壓下,室溫為 $$-5^\circ C$$ 時,水會自發性的轉變為 $$-5^\circ C$$ 的冰,如果將室溫提高為$$x^\circ C$$,則 $$x^\circ C$$ 的 $$\mathrm{H_2O}$$ 應該會以水的形式存在?或是以冰的形式存在?我們以上例相同的計算方式,分別計算室溫變為 $$-5$$、$$-3$$、$$0$$、$$2$$、$$5^\circ C$$ 時,各步驟中系統熵和環境熵的變化,其結果詳如表一。

63148_c1

表一$$~~~$$常壓下,水在不同溫度下轉變成同溫度冰時熵的變化情形(熵的單位為 $$JK^{-1}mol^{-1}$$)(作者整理)

由表一可看出當室溫為 $$270~K(-3^\circ C)$$ 時,其 $$\Delta S_1$$ 相對於 $$268~K$$ 時的 $$1.39$$ 減少,變為 $$0.83$$,即系統由 $$270~K$$ 上升至 $$273~K$$ 時所吸收的熱量,比由 $$268~K$$ 上升至 $$273~K$$ 時來得少的緣故。

熔點以下的水會自發性結成冰的原因-環境熵和系統熵一樣重要(一)

熔點以下的水會自發性結成冰的原因-環境熵和系統熵一樣重要(一)
The reason of water would spontaneously turn into ice when the temperature is below the melting point – the surrounding entropy is as important as system entropy (I)

國立臺灣師範大學化學系兼任教師 邱智宏

熱力學第二定律有許多不同面相的敘述,其中一種說法為:當系統內一個自發性的程序 (spontaneous process) 進行時,系統 (system) 和環境 (surrounding) 中所有熵 (entropy) 變化的總和會大於 $$0$$,即 $$\Delta_{tot}S>0$$(若等於 $$0$$ 則屬以可逆的情況),$$\Delta_{tot} S$$ 等於 $$\Delta_{sur}S+\Delta_{sys}S$$,其中 $$\Delta_{sur}S$$、$$\Delta_{sys}S$$ 分別代表環境熵及系統熵的變化量。

此說法中隱含著三個要素,首先系統的熵大於 $$0$$,並不一定會產生自發反應,小於 $$0$$ 也不一定不會發生,需將環境的熵一併考慮進來,方能判讀。其次自發反應必屬於不可逆 (irreversible) 反應。最後,系統和環境間,熱量的交換,除了正負號不同以外,絕對值應為相等,但是兩者最終的熵卻不相同,可見在系統及環境中一定存在改變它們的條件。

這些要素對於初學物理化學的學子來說略嫌抽象,若能透過日常生活中顯而易見的例子,例如常壓下,$$-5^\circ C$$ 的水,在室溫為 $$-5^\circ C$$ 時會自發性的結成冰,或 $$5^\circ C$$ 的冰在高於熔點的室溫下,會迅速熔化成水,將其變化過程中熵、焓的改變加以計算及說明,或許在思索、領略這些要素時,能獲得事半功倍的效果。

水的三相點不止一個

水的三相點不止一個
國立臺灣師範大學化學系兼任教師邱智宏

高中化學課程介紹相圖(phase diagram)時,常以大家耳熟能詳的「水」開始,探討其在不同溫度、壓力下的狀態變化。然而水的相圖,卻非常態,而是少數的例外,大多數純物質的相圖和水的長相不同,因此如何理解其不同的原因,便顯得格外重要。另外,水在高壓時的相圖卻甚少提到,其性質與低壓的情況是否相同?有没有 $$100^\circ C$$ 的冰?水的三相點僅有一個嗎?

完美的聚合物晶體

完美的聚合物晶體
國立臺灣大學化學系名譽教授蔡蘊明

聚合物是人生存必需的一種分子,大家熟知的核酸是由核苷酸單元所組成的聚合物,乃基因的主要結構。蛋白質是由胺基酸的單元所組成的聚合物,扮演生命化學裡重要的催化劑角色。由單醣組成的聚合物,包括澱粉、纖維等,亦是重要的生命化學物質。但是在日常生活中,人工合成的聚合物業已成為不可或缺的材料,舉凡食、衣、住、行、育、樂、和醫療都必須仰賴具有特定功能的聚合物素材。

要在實驗室製備具有單一分子量的聚合物不是一件容易的事,那需要非常精準的控制。從這個困難來看,生命體系裡面的許多聚合物是具有單一結構的分子,例如許多的蛋白質,以及重要的核酸,因此我們不能不佩服大自然精巧的設計。當然生命體所製造的許多聚合物,也可以是各種不同聚合程度的集合體,例如澱粉或纖維,只能用平均的分子量或分子量範圍來描述。大自然為何具有如此的多樣性呢?這是因為各種材料的存在是為了符合其使用的需求和環境。以心臟為例,它是由許多蛋白質所組合而成的肌肉,所構成的一個複雜裝置,在人的一生中必須跳動約25億次,讓氧氣透過約144,000公里路徑輸送到全身各處,有些位置的血管只有頭髮粗細(管徑愈細需要的壓力愈大),每天運送約8000升的血液而甚少出現血管壁的損壞。與大自然的設計,以及製造這些材料的精準度和耐用性來比較,人類科學家的能力還是非常的基礎!

單一元素準晶的突破性進展

單一元素準晶的突破性進展
國立臺灣大學科學教育發展中心陳藹然博士

日本中央大學新聞2013年12月3日訊

還記得2011年諾貝爾化學獎的得獎研究嗎?以色列化學家丹尼‧謝西曼 (Daniel Shechtman)以準晶體(quasicrystal)的發現,改變了世人對晶體的傳統定義,原來只要原子遵守某種規律排列形成的固體就是晶體,不論是不是有週期性的重複。但是在謝西曼教授的研究中,以合金、高分子或奈米粒子為主,並沒有觀察到單一元素構成的準晶。

準晶和一般晶體不同之處在於,準晶具有5邊形或10邊形的原子排列結構,其結構排列內含黃金比例與費式數列,顯現出另一種「沒有重複的規律性」的美。此外,由於準晶結構的特殊性,加上准晶內化學組成的複雜性,晶體穩定度和特殊物質性質等,依舊迷霧重重。因此,科學家希望回到最簡單的狀態,如果能得到由單一元素組成的準晶,也許就能更加清楚瞭解準晶。

Zn-Mg-HoDiffraction

(圖片來源:維基百科)

超臨界二氧化碳

超臨界二氧化碳 (Supercritical carbon dioxide)
臺北市立第一女子高級中學二年級陳郁欣/臺北市立第一女子高級中學化學科許名智老師

超臨界流體簡介

物質通常具有大家所熟知的固、液、氣三相,但當溫度及壓力都大於其臨界溫度及臨界壓力時,液體和氣體之間沒有明顯的界面,形成既非氣相也非液相的另一種均勻相,稱為超臨界相。

一般而言,超臨界流體具有低黏度、高密度、高擴散性和低表面張力等介於氣、液相之間的物理性質。例如,因為黏度接近氣體且擴散係數比液體高10至100倍,在輸送上較液體容易也迅速。密度接近於液體,因此可輸送比氣體更多的超臨界流體。此外,因為幾乎沒有表面張力,使之容易滲入多孔性組織中。在化學性質上,超臨界流體也與氣、液態時有所不同。例如,二氧化碳在氣體狀態下不具萃取能力,但進入超臨界狀態後,二氧化碳變成親有機性,因此產生隨溫度及壓力而不同的溶解有機物的能力。

c1

圖片來源:楊顯整(2009),「超臨界綠色技術之概述」,綠基會通訊,第7頁。

超臨界二氧化碳

目前超臨界流體技術的應用範圍包括萃取、分離、清洗、染色、純化、奈米顆粒形成與化學反應等。

超臨界二氧化碳具無毒、無色、無臭、費用低、無殘留、不可燃性、無廢水處理問題、化學穩定性佳及易達到臨界點(Pc=72.8 atm, Tc=31.1 ℃)等優點,是一種「乾淨」的溶劑,因此最常被使用。

(1) 去除咖啡中的咖啡因

先利用乾燥的超臨界二氧化碳,萃取經焙炒過的咖啡豆中的香味成分,再利用含有水分的超臨界二氧化碳,將咖啡豆中的咖啡因取出,最後將先前萃取出的咖啡香味放回不含咖啡因的咖啡豆中。由以上步驟可以發現,超臨界二氧化碳因為有高滲透力與低表面張力,而可深入咖啡豆內部。另外,因此也顯示我們可以藉由改變二氧化碳的物理及化學性質,來改變其溶解能力及對溶質的選擇性。

大氣壓力 (Atmospheric pressure) 與大氣壓 (Atmosphere, atm)

大氣壓力 (Atmospheric pressure) 與大氣壓 (Atmosphere, atm)

國立臺灣大學化學工程系碩士生吳宗澤/國立臺灣大學化學系陳藹然博士責任編輯

大氣壓力 (Atmospheric pressure) 來自於大氣層中空氣所產生的重力,大氣壓 (Atmosphere),為描述大氣壓力大小的單位之一,通常以縮寫「atm」表示。

在較低海拔時,由於其上的氣體量比高海拔處多,故具有較大的大氣壓力;反之,高空的空氣較稀薄,大氣壓力也就隨著海拔高度而逐漸下降,其關係可以由以下的關係式來說明:

P:壓力,P0:海平面上的平均壓力,z:高度,H:尺度高 (Scale height)。

尺度高不是常數,會受到溫度影響。空氣熱脹冷縮,當溫度升高時,空氣密度變低,相同面積的土地其上方的空氣也就較輕,所以高溫地帶的大氣壓力較低。同理,溫度越高尺度高越大;對於相同的P0以及z來說,H越大,則會造成P越小。

由於不同地方的海拔高度不同,也因此我們需要一個標準大氣壓值為參考標準,國際參考壓力值定義地球海平面上的平均壓力為101325 Pa,也就是1 atm。下表為其他大氣壓力單位和大氣壓的轉換關係。

氣壓計(Barometer)

氣壓計(Barometer)
國立臺灣大學化學系學士生張育唐/國立臺灣大學化學系陳藹然博士責任編輯

氣壓計(Barometer),氣象學中用於測量大氣壓力(Atmospheric pressure)的一種科學儀器;利用水、水銀等測量大氣的壓力。由於氣壓可能會影響到某些實驗的結果,因此在實驗室內,有時會有氣壓計的蹤跡。

義大利物理學家托里切利(Evangelista Torricelli, 1608 – 1647)於1643年發明的水銀氣壓計,是科學史上最早的一種氣壓計,又稱為托里切利氣壓計(Torricellian barometer)。氣壓計為一端密封之長玻璃細管,管內裝滿水銀後將其倒扣於一裝著水銀的容器中(圖一)。托里切利觀察到當細管倒扣於容器中時會有部 份的水銀從管中流出,剩下的水銀管柱高度隨不同的天氣狀態略有升降,然而其高度大致維持在76公分(760 mm)附近。

圖一、托里切利氣壓計

立方晶體

立方晶體 (Cubic Crystal)
國立臺灣大學化學系學士生黎哲豪/國立臺灣大學化學系陳藹然博士責任編輯

立方晶體(Cubic Crystal)是一種最基本的單位晶格(Unit cell):晶格形狀為一立方 體,為一常見之礦物晶體結構,又可區分為體心立方堆積(Body-centered cubic  packing, BCC)、面心立方(Face-centered cubic packing, FCC)和簡單立方(Simple cubic packing, SC)三種。因為在立方體在三維空間中各個方向都等價,因此就光學性質、電磁性、折射率來說各個方向皆相同,具各向同性(Isotropic)。

圖一、立方晶體:(由左至右)簡單立方堆積、體心立方堆積、面心立方堆積。(圖片來源:http://en.wikipedia.org/wiki/Cubic_crystal_system)

體心立方以及面心立方都是金屬常見的堆積形式,例如堆積為體心立方的有:鐵(Iron)、鉻(Chromium)、鎢(Tungsten)、鉭 (Tantalum)等,面心立方的有鎳(Nickel)、銅(Copper)、銀、金等,簡單立方堆積的金屬比較少見例如鉍(bismuth),面心立方堆積的固體具有較大的密度。

Pages