貝葉斯和貝氏定理(3)(Thomas Bayes and Bayes’ Theorem (3))
貝葉斯和貝氏定理(3)(Thomas Bayes and Bayes’ Theorem (3))
臺北市立第一女子高級中學蘇俊鴻老師
連結:貝葉斯和貝氏定理(2)
接著,我們來看貝葉斯如何求出 \(P(F)\) 和 \(P(E\cap F)\)。他用了一個頗為獨特的想法,據以建立機率模型進行計算。如圖一,考慮水平擺放一個正方形的桌面或平面 \(ABCD\),將球 \(O\) 或 \(W\) 拋向桌面,並假設它們落在桌面上任何相等區域內的機率相同。
這時,假設球 \(W\) 先拋,過落點畫一條直線 \(ot\) 平行 \(AD\),分別交 \(CD\) 與 \(AB\) 於 \(t\) 和 \(o\)。接著,球 \(O\) 被拋擲 \(p+q=n\) 次,如果它一次單獨拋擲中落在 \(AD\) 和 \(ot\) 之間,稱為在一次試驗中發生了事件 \(M\)。

