坐標幾何(平面與空間)

過圓上一點求切線(二) (Finding the tangent line through a point on a circle Ⅱ)

過圓上一點求切線(二)(Finding the tangent line through a point on a circle Ⅱ)
國立臺灣師範大學數學所博士班黃俊瑋

連結:過圓上一點求切線(一)

前文〈過圓上一點求切線(一)〉裡,介紹了此問題的公式解以及另外兩類求切線方法。本文繼續介紹其它方法,其中包含了兩種與微分相關的方法。在此先重述一次原問題:

已知坐標平面上一圓之方程式為 \({(x – 1)^2} + {(y – 2)^2} = 5\),
求過此圓上一點 \(P(3,1)\) 的切線方程式。

方法3圓心到切線距離等於半徑 

先利用點斜式可假設過 \(P(3,1)\) 之切線方程式為:\(y-1=m(x-3)\)。

又如圖一所示,圓心到切線距離等於圓之半徑(\(d(O,L) = r\)),利用此關係以及點到直線距離公式可得:

\(\displaystyle\frac{{|m – 2 – 3m + 1|}}{{\sqrt {{m^2} + 1} }} = \sqrt 5\)

此時,兩邊平方並進一步整理解之得 \(m=2\)。則所求切線為 \(y-1=2(x-3)\)。

過圓上一點求切線(一) (Finding the tangent line through a point on a circle Ⅰ)

過圓上一點求切線(一)(Finding the tangent line through a point on a circle Ⅰ)
國立臺灣師範大學數學所博士班黃俊瑋

高二上圓與直線相關單元裡,除了介紹平面上的圓與直線的方程式之外,也進一步利用方程式討論了圓與直線的關係。其中,當直線與圓相切時,又衍生出三類常見求切線問題:1.過圓上一點求切線、2.過圓外一點求切線,以及3.求已知斜率之切線。

本文主要聚焦在第一類過圓上一點求切線問題上,一方面提供多類解法,並說明該解法能否推廣用於其它兩類問題,以及能否推廣至拋物線、橢圓與雙曲線相關求切線問題上(現今高中課程有關三類圓錐曲線的求切線問題已刪除,因此,這部份筆者僅略述之)。

平面上點到直線距離(三)

平面上點到直線距離(三) (The distance from a point to a line in the plane Ⅲ)
臺北市立和平高中教師黃俊瑋

連結:平面上點到直線距離(二)

本文承〈平面上點到直線距離(一)〉與〈平面上點到直線距離(二),繼續提出三類平面上點到直線距離的解法以及相關討論與連結。而本文中的各類解法,主要在直線上任取一點或兩點,造出新向量,所延伸出的方法。

方法5:在直線上任取一點,再利用平行與垂直性質

本類方法主要是引入直線上的一點後,充份利用直線的法向量與方向向量,輔以平行與垂直相關性質與關係,求得投影點與距離。

方法5-1:在直線上任取一點,再利用平行與垂直相關性質

在 \(L:3x+4y=10\) 任上取一點 \(P'(2,1)\),則 \(\vec{P’P}=(1,-7)\) ,
令 \(Q\) 為 \(P(3,-6)\) 在 \(L\) 的投影點,\(\vec{P’Q}\) 與直線之方向向量平行,可設為 \(\vec{P’Q}=t(4,-3)\)。

接下來,可發展出兩種方法,分別利用直線的法向量或方向向量,搭配平行與垂直關係進行解題:

5-1-1

則 \(\vec{QP}=\vec{P’P}-\vec{P’Q}=(1-4t,-7+3t)\) 平行直線 \(L:3x+4y=10\) 的法向量
分量成比例 \(\frac{{1 – 4t}}{{ – 7 + 3t}} = \frac{3}{4}\),可得 \(4(1-4t)=3(-7+3t)\),解之可得 \(t = 1\),
可得投影點為 \(Q(6,-2)\),則 \(\overline{PQ}\) 之距離 \(5\) 即為所求。

5-1-2

\(\vec{QP}=\vec{P’P}-\vec{P’Q}=(1-4t,-7+3t)\) 垂直直線 \(L:3x+4y=10\) 的方向向量
內積為 \(4(1 – 4t) + ( – 3)( – 7 + 3t) = 0\),解之可得 \(t = 1\),
可得投影點為 \(Q(6,-2)\),則 \(\overline{PQ}\) 之距離 \(5\) 即為所求(參考圖一所示)。

56193_p1

圖一 在直線上任取一點,再利用平行與垂直性質(一)

平面上點到直線距離(一)

平面上點到直線距離(一) (The distance from a point to a line in the plane Ⅰ)
臺北市立和平高中教師黃俊瑋

求平面上一點 \(P(x_0,y_0)\) 點到直線 \(L:ax+by+c=0\) 距離問題,是高中課程中重要而基本的問題,此問題出現在平面向量單元裡,課程中並且提供了公式解:

\(\displaystyle d(P,L)=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}\)

而這個公式 除了可用以推導出平面上兩平行直線之距雄公式之外,亦可推廣至空間中,求一點 \(P(x_0,y_0,z_0)\) 點到平面 \(E:ax+by+cz=0\) 距離問題。

儘管「代公式」的方式簡便而快速,但事實上,除了公式解之外,尚存在許多不同的解法,這些解法分屬於高中坐標幾何、向量幾何與三角學等課程範疇,若不考慮各解法背後的邏輯關係,在學完相關單元後,可以由此問題出發,進行一題多解,將坐標幾何、向量幾何相關單元中的重要概念,作一連結,而當中的許多方法與想法,亦可進一步用於空間中點、線、面相關距離問題。以下,我們以實際問題為例,在本文以及〈平面上點到直線距離(二)〉、〈平面上點到直線距離(三)〉等文裡,提供公式解之外,共七大類,近20種解法,除了討論各類解法所涉先備知識,以及這些方法與空間中相關問題之間的連結。

空間向量的外積及幾何意義

空間向量的外積及幾何意義 ( The cross product and its geometric interpretation )
臺北市立和平高中黃俊瑋教師

現今高二下有關空間向量的教材提到,若 \(\overrightarrow a= ({a_1},{a_2},{a_3})\) 與 \(\overrightarrow b= ({b_1},{b_2},{b_3})\) 為空間中的兩向量,則定義 \(\overrightarrow a\) 與 \(\overrightarrow b\) 兩向量之外積

\(\overrightarrow a\times \overrightarrow b=(\left| {\begin{array}{*{20}{c}} {{a_2}}&{{a_3}}\\ {{b_2}}&{{b_3}} \end{array}} \right|,\left| {\begin{array}{*{20}{c}} {{a_3}}&{{a_1}}\\ {{b_3}}&{{b_1}} \end{array}} \right|,\left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}\\ {{b_1}}&{{b_2}} \end{array}} \right|)\)。

另一方面,空間中 \(\overrightarrow a= ({a_1},{a_2},{a_3})\) 與 \(\overrightarrow b= ({b_1},{b_2},{b_3})\) 兩向量所張成的平行四邊形面積為:

\(A = \sqrt {{{\left| {\begin{array}{*{20}{c}} {{a_2}}&{{a_3}}\\ {{b_2}}&{{b_3}} \end{array}} \right|}^2} + {{\left| {\begin{array}{*{20}{c}} {{a_3}}&{{a_1}}\\ {{b_3}}&{{b_1}} \end{array}} \right|}^2} + {{\left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}\\ {{b_1}}&{{b_2}} \end{array}} \right|}^2}}\)

眼尖的讀者,不難發現  \(\overrightarrow a\times\overrightarrow b\) 之長恰為此平行四邊形之面積值,即 \(A = \left| {\overrightarrow a\times\overrightarrow b }\right|\)。

用向量來看平面族(Use Vectors to Understand Family of Planes)(3)

用向量來看平面族(Use Vectors to Understand Family of Planes)(3)
臺北市立第一女子中學數學科蘇俊鴻老師

連結:用向量來看平面族(Use Vectors to Understand Family of Planes)(2)

接著我們來看些可用「平面族」解決的問題吧!事實上,空間中的直線方程式可表成兩面式,因此,在求與直線條件有關的平面方程式問題上,「平面族」常有意想不到的妙用。
看看下面的例子:

求包含$$x$$軸,且過點$$A(1,-1,2)$$的平面方程式。

(解法一)
在$$x$$軸上取一點$$B(1,0,0)$$,且$$x$$軸的方向向量為$$\vec{v}=(1,0,0)$$,

由於所求平面包含$$x$$軸,並過$$A(1,-1,2)$$,

平面的法向量$$\vec{n}~//~\vec{v}\times\vec{AB}=(1,0,0)\times(0,1,-2)=(0,2,1)$$,故取$$\vec{n}=(0,2,1)$$

因此,平面方程式為 $$2y+z=0$$

(解法二)
由於$$x$$軸的直線方程式可寫成$$\begin{cases} y=0\\ z=0\end{cases}$$  (兩面式),

根據平面族定理,包含$$x$$軸的任意平面可以寫成$$y+kz=0$$,

將$$(1,-1,2)$$代入,得 $$k=\frac{1}{2}$$

所以,平面方程式為 $$y+\frac{1}{2}z=0\Rightarrow 2y+z=0$$

用向量來看平面族(Use Vectors to Understand Family of Planes)(2)

用向量來看平面族(Use Vectors to Understand Family of Planes)(2)
臺北市立第一女子中學數學科蘇俊鴻老師

連結:用向量來看平面族(Use Vectors to Understand Family of Planes)(1)

接著,我們就來證明「過兩已知平面交線的任意平面可以寫成這兩個平面的線性組合」會成立:

c1

【証明】整個定理的証明可分為三部份:

1. 上面的方程式(*)一定是表示平面方程式;
2. 方程式(*)一定會通過$$E_1$$與$$E_2$$的交線$$L$$;
3. 証明任何通過$$L$$的平面均可寫成方程式(*)的形式。

用向量來看平面族(Use Vectors to Understand Family of Planes)(1)

用向量來看平面族(Use Vectors to Understand Family of Planes)(1)
臺北市立第一女子中學數學科蘇俊鴻老師

在空間中平面與直線的章節時,常會遇到這樣的問題:

求過二平面\(2x+y-4=0\)與\(y+2z=0\)的交線,且過點\(Q(2,-1,-1)\)的平面方程式。

基本上,這類問題的解法常是先找到兩個平面交線的方向向量及交線上的一點坐標,就能變成「求包含已知一線及線外一點的平面方程式」的基本問題類型。解法如下:

兩平面交線\(L\)的方向向量\(\vec{v}\)同時垂直兩平面的法向量,
故\(\vec{v}~//~(2,1,0)\times(0,1,2)=(2,-4,2)=2(1,-2,1)\),可取\(\vec{v}=(1,-2,1)\)。
接著,在交線\(L\)取一點\(P\),需同時滿足\(2x+y-4=0\)與\(y+2z=0\),
故取\(z=0,~y=0,~x=2,~\therefore P(2,0,0)\), 
所求平面包含直線\(L\)與點\(Q(2,-1,-1)\),
因此,法向量\(\vec{n}~//~\vec{v_L}\times\vec{PQ}=(1,-2,1)\times(0,1,1)=(-3,-1,1)\),
取\(\vec{n}=(3,1,-1)\),故所求平面方程式為 \(3x+y-z-6=0\)

利用複數坐標處理平面幾何問題

利用複數坐標處理平面幾何問題(Complex Coordinate in Plane Geometry)
國立臺灣師範大學數學系趙文敏教授/國立臺灣師範大學數學系趙文敏教授責任編

摘要:本文利用複數坐標處理幾道平面幾何問題

在坐標平面上,當點 $$P$$ 的直角坐標為 $$(x,y)$$ 時,我們也稱 $$x+iy$$ 是點 $$P$$ 的複數坐標,以 $$P(x+iy)$$ 表之。當一平面上定義了一個複數坐標系時,我們稱此平面為複數平面或高斯平面或 Argand 平面。在複數坐標系中,點 $$O$$ 仍稱為原點,  $$x$$ 軸改稱為實軸、$$y$$ 軸改稱為虛軸。

Pages
  • 1
  • 2