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Complex Variables

Chapter 17
Functions of a Complex Variable
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e Complex numbers

e Powers and roots

e Sets in complex plane

e Functions of a complex variable

e Cauchy-Riemann equations

e Exponential and logarithmic functions
e Trigonometric and hyperbolic functions

e |nverse trigonometric and hyperbolic
functions
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Complex Numbers

e Solve the quadratic equation

—1++/-3 . —1+4/34/-1
2

2

X°+X+1=0 = X =

Define | by i?=-1
o Def. A IS any number of the
form z =a + Ib where a & b are real numbers
and I Is the imaginary unit.
Real part 2> Re(z) = a
Imaginary part 2 Im(z) = b
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Complex Numbers :

e Def. Complex numbers z, & z, are equal If
Re(z,) = Re(z,) & Im(z,) = Im(z,).
o A complex numberz=0Iif Re(z) =0 & Im(z) = 0.
o Ifz,=x,+1ly,; &7, =X, +1y,
o Addition: z; +z, = (X + Xy) + (Y, +Y,)
e Subtraction: z; —z, = (X; = X,) + 1(Y; — Y>)
e Multiplication:
2,2, = (X T 1y1)(X; +1Y,) = (XX— Y1Yo) + 1(Y1Xo + X1Y5)
© DVISION: 7, x iy, XX+ V1Y, VX — X AL

1
- 2 2
L, X tly, Xo Y, X; +Y;
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Complex Numbers

e Familiar laws hold for complex numbers

Commutative laws: | Z; +Z, = £, + £,
9

(L14p = L4
- p
Associative laws: (7. + (Zz n 23) — (21 n 22)+ Z,

9
kz1(zzz3) = (lez )23
Distributive law: Z,(Z, + Z,)= 7,2, + 2,2,




Complex Numbers
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If z = x + iy, then the conjugate of zis Z = X — 1V
It is very easy to show that

—_ Z, Z,
L2, =141, — | =
Z, Z,

The sum & product of a conjugate pair are

(2+7=(x+iy)+(x—iy)=2x---(1)
27 = (x+iyx—iy)=x" —i’y* =x* + y*---(2)

9




¥ OpenCourseWare
({OR-FN ) EA 3
L

Complex Numbers

Difference between a conjugate pair is
2—7 =(x+iy)—(x—iy)=2iy---(3)
(1) & (3) yield two useful formulas
Z+Z Z—1
Re(z)=—— and Im(z)=——
2)-2 (2)-2
Division of complex numbers using (2)

Ly _ Z172 (X1X2 + Y1Y2)+ i(Y1X2 B lez)

5 2 2
Z2 ZZZZ X2 T y2 1

Ex. Ifz,=2-3i&2z,=4 +6i, find L & =
ZZ zl
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Complex Numbers

A complex number z = x + 1y is uniquely determined
by an ordered pair of (X, Y).

Ex. The ordered pair (2, —3) corresponds to the
complex number z =2 — 3l.

One can associate a complex number A y
Z =X + iy with a point (x, y) in a r=z+iy |
coordinate plane. o,

The complex number can also \

be viewed as a vector from the

origin to the terminal point (x, vy). 5
J P xy) (@) BY-NC-SA
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Complex Numbers

e Def. Modulus or absolute value of z=x + 1y,
denoted by [z| , Is the

‘z‘ :\/)(2 +y° =«/ZZ---(4)
e Sum of the vectors z, & z, is the vector z, + z,.
And we have Ly

2, + 2, <|z)]+|z,|-+-(5) N

e ““-—-.‘. 21
Z,+2,+ -+ 2, | <|z|+|z, |+ 4|2, \
S
o+ 222/, o\
@) BY-NC-SA T
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Powers and Roots

Rectangular coordinate (X, y) and polar coordinate
(r, 0) are related by x =r cos@ &y =r siné.

A nonzero complex number z = x + Iy can be
written as z = (r coséd) + I(r siné) or

z=r(cos@+isind)---(6) Ay
zZ=x+ 1y
Polar form of complex numberz e
) A
N = ‘Z‘ 7 sin 6| ! \\9
0= arg(z) —tanfd == rcosf T
. S ov-nc-sa N
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Powers and Roots

e Argument of a complex number In the interval
—r< 8< ris called the principal argument of
z and iIs denoted by Arg(z).

Ex. Arg(i) = 2.
Ex. Express z=1—+/3i in polar form. v

x=1 ST
{y=—\@ = r=[2] = (@} +(-+3] -2 3/ |
an0=-3A=—~3 = 0=ag(t)=57/3 “pt T

=9 57 . . brx \O
2=2| 00s—-+isin=— RN

@) sv-ne-sa |



http://creativecommons.org/licenses/by-nc-sa/3.0/tw/

ational Taiwan University

Powers and Roots

e The principal argument of z Is
6 =Arg(z)=-7/3
Thus, an alternative polar form  , , Em:E=.
of the complex numberis 5=

=2 cos(—zjﬂsin(—zj 3/\ -
. 3)1 /= °

12
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Powers and Roots

It is very convenient to use the polar form.
Suppose |2, = r,(cosé, +isiné,)

2, =1,(cos @, +isin6,)
= 7,2, = 1,1, |(cos 6, cos @, —sin 6, sin 6,)
+i(sin 6, cos @, +cos b, sin 6, )]
2,2, = t,1,[cos(, + 6, )+isin(6, + 6,)]
|22,|=[2]z,
\arg(zlzz ) — arg(zl)+ arg(zz)

Or s




thiumal Taiwan University

eeeeeeeeeeee

%kﬁﬂﬁ?ﬂ&fi
L

Powers and Roots

— % = D (cosd, cosd, +sin6,sind,)

+i(sin @, cos @, —cos @, sin 6, )]

LA _h [cos(6, — 8, )+isin(6, -6, )]

z|_Jal Z _
or T and arg[Z j arg(z,)—arg(z,)

e Itis NOT true that [Arg(z,z,)= Arg(z, )+ Arg(z,)
<

( 1/2 ) Arg(zl)—Arg(zz)
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Powers and Roots

Integer powers of the complex number z
22 =r?|cos(6 + ) +isin(6+ )| = r’(cos 26 +isin 26)
2° = 7%z =r*(cos 36 +isin 36)

Moreover,
77 = 2—12 = r2|cos(-28)+isin(-26)

For any integer n: 2" = r"[cosn@+isinné]

15



¥ OpenCourseWare
({OR-FN ) EA 3
L

Powers and Roots

w is said to be an n-th root of z if W" = Z
Let w= p(cosg+ising) and z=r(cos@+isin6)
= W" = p"(cosng+isinng)=r(cosd +isin )

(,onzl’:>,0=ryn

—> < COSN@ =Ccosdé
osng=c ng=0+ 2k - p=lT2KT
sinng =sin @ n

Ask=0,1,2,...,n—1, we obtain n distinct roots
with the same modulus but different arguments. =



Powers and Roots

Fork=n+m,wherem=0,1, 2, .... Then

¢ =

N

= SINg = sin(

O+2mrx
N

0+2(n+m)z _O+2mzx
Nn

j, COS ¢ = cos(

+ 27

O+2mr )
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nJ

To summarize, the n-th root of a nonzero complex
number z = r(cos@+ i siné) are given by

l/n_ (9+2k72'
W, =1""|COS "

J

+1SIN

wherek =0,1,2,---,n-1

|

0+ 2k

N

)

17
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e EX. Find the three cube roots of z = 1.

:>{r:1 | -z =cos(z/2)+isin(rz/2)

6=arg(i)=r/2

= W, :(1)]/3 cos(ﬂ/zJ;Zkﬂj+isin(ﬂ/zJ;Zkﬂj k=0,1, 2.

- - Ay
k=O:>W0=COS£+iSin7T=\/§+1i
K = 1:>W—C085—+ISIH5—7T=—£+£I ?
6 2 2
372' w9

k=2:>w2=cos3—ﬂ+isin—=—i
2 2

18
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Powers and Roots

Principal n-th root of z: the root w of z obtained
by using
The n roots of the nonzero z lie on a circle of

radius r¥" centered at the origin in the complex
plane and are equally spaced on this circle.

Ex. Find the four fourth roots of z=1 +1.

fa o :
= 16’ _arg(2)= /4 S L= ﬁ[cos(n/4)+|3|n(7z/4)]

=W, = (ﬁ)w{cos(ﬂ/d'zzmj +1 sin(ﬂ/A'ZZkﬂﬂ, k=0, 12 3.
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Sets In Complex Plane

o Since |z2—z,|= \/(x—xo)2 +(y-y,) isthe
distance between the points z=x+ 1y and z, =
X, + 1y, the points z satisfying the equation

z-2|=p, (p>0)
lie on a circle of radius p centered at z,.
Ex. |z| =1
EX.|z-1-21=5
e The points z satisfying |z — z,| < p lie

within, but not on, a circle of radius
p centered at z,. e -
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Sets In Complex Plane

e 7, Is said to be an interior point of a set S of
the complex plane if there exists some
neighborhood of z, that lies entirely within S.

e If every point z of a set S is an interior point,
then S is said to be an open set. -7 ">,

( \
Ex. Re(z) > 1 defines a right half-plane. -7t |z — z| < & \

/

—

. L ozg=1041.52

' s | e 21
@) sv-ne-sa | el A Ge—
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Sets In Complex Plane

Ay

Ay

| |
| ]
| |
| |
| I
| ] .
| |
| |
| I
| |
| |

P
Y
A . in S
. : |
Im(z) <0 —1 < Re(2) < 1
, not in S
Ay Ay _
P @) v-NC-5A x
/’-“\ !/ /’H\ \\
\ } - — —
A % T \\ A % // €T
Open annulus
2 >1 eoneem 1 <[z <2 -
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Sets In Complex Plane

e If every neighborhood of z, contains at least
one point that is in S & at least one point that

ISnotinS 2> z,Is a of S.
e Boundary of a set S is the set of all boundary
points of S.

Ex. For Re(z) > 1, the points on Re(z) = 1 are
boundary points.

23
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Sets In Complex Plane

e If any two points z, & z, In a set S can be
connected by a polygonal line that lies entirely
INS = Sis a connected set.

e An open connected set is called a domain.

EX. The set Re(z) # 4 is open but not
connected.

e Region Iis a domain in the complex
nlane with all, some, or none of its
poundary points.

~1

22
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Functions of a Complex & dxnsan
Variable

e Function f from a set Ato a set B Is a rule of
correspondence that assigns to each element
In A one and only one element in B.

b=f(a) < bisthe image of a
Domain & range of the function f
EXx. A set of real numbers A: 3<x<w & the
function given by f(x)=+/x-3
-> the range of f :
- fisa

25
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Variable

e When the domain A is a set of complex
numbers z — f Is said to be a function of a
complex variable z.

e The image w of z will be complex, too.

w= f(z)=u(x,y)+iv(x,y)-(7)

where u = Re(w) & v = Im(w) are real-valued
functions.

Ex. f(z)=2*-4z Vz
= f(z)=(x+iy)’ —4(x+iy):(x2 —y? —4x)+i(2xy—4y)
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Functions of a Complex & dxnsan
Variable

e A complex function w =f (z) can be interpreted
as a mapping or transformation from the z-
plane to the w-plane.

Ay Ao
w= f(z
2 > - o’
> >
x u
domain of f range of f

z-plane () BY-NC-SA | w-plane 27
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Functions of a Complex o KB AR

Variable :

Ex. Find the image of the line Re(z) =1 under
the mapping f (z) = z°.

( w2 2
fueyxoy
- Re(z)=x=1 \
e 1 2 Z Z
- ! _; y 1 / 9
LV= y xr = o
, / u=1 1
Jou =1—V— z-plane o=y w-plane
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Functions of a Complex & dxnsan
Variable

e Complex function w =f (z) is completely
determined by real-valued functions u(x, y) &
v(X, y), even though u + Iv may not be
obtainable via familiar operations on z alone.

EX. f (2) = xy? + (X% — 4y3)

29
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Variable :

e We also may interpret w =1 (z) as a 2-D fluid
flow by considering f (z) as a vector based at
the point z.

fi(z) =2 fo(z) = 2
7T T TVUNNN] o ]
A N N AN,
Lio v 7 0 v N N ] 11 \l\/; C o/
yol_ 2 0 222wl Lz
QPSS NNt s -1 /T"\'\ AN
SNNNN s, {\\\j;fx\
AN RN
2 -1 0 1 2 2 -1 0 1 2
x r (ODIETE o
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Functions of a Complex R s kmian
Variable

o |f X(t) + 1y(t) Is a parametric representation for
the path of the flow,

T = d)c(l—E)HdZI—E) must coincide with f(x(t)+iy(t))
e When f (z) = u(x, y) + iv(x, y), the path of the

flow satisfies [ dx(t)

?ZU(X, Y)

dy(t)

. dt

J\

=Vv(x,y)

31



Functions of a Complex
Variable

e FInd the streamlines of the flows.

ational Taiwan University

32

dx
=X e B
f(z)=z=x-iy =>{ A = - (t)=ce
dy__, )=
_at
f,(2)=22 = (x* - y?)+i2xy
dx o,
—=X"-Yy
— J dt W Y ey
dy dx  x*—y? i
E:2xy y




Functions of a Complex

Variable
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Suppose f is defined in some neighborhood of z,,
except possibly at z, itself. f is said to possess a

limit at z,,

lim f(z)=L--(8) 4" -

21,

For each ¢> 0, there

~
0.

]
v <0 y

exists a 6> 0 such that | “~--
If (z) — L| < ewhenever 2

0<|z-1z) <0

0-neighborhood

i, =

f(z)

Nt

\ - €

ﬁﬁ\ \ - -
_— U

33
e-neighborhood
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Functions of a Complex
Variable

suppose lim f(z)=L, and lim g(z)=

Z—1, 21,

Then

0) tim{f(2)+ o)=L +L,
)

(ii) lim f(z g(z) LL,

21,

1) lim (Z) #
( )ZLZO g(Z) L, St

Open‘CTo.urserarle
TR-VN ) Ev
[
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Functions of a Complex & dxnsan
Variable

A function f is continuous at z, if lim f(z)= f(z,)

27,

e A function f defined by
f(z)=a,z"+a_,z2"" +---+a,z° +az+a,, a, #0
where n Is a nhonnegative integer & a; (1 =0,

1, ..., n) are complex constants, is called a
polynomial of degree n.

A polynomial is continuous everywhere.

35



Functions of a Complex & dxnsan
Variable

9(2)

e Arational function f(Z)=@

where g & h are polynomial functions, Is
continuous except at points at which h(z) = 0.

Suppose f is defined in a neighborhood of z,.

o v Tz, +Az)-f(z,)
= 11a,)= tim o2 1), g
where Az = AX+ 1Ay 3
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Functions of a Complex & dxnsan
Variable

If f is differentiable at z,, then f'is continuous at z,.

If f & g are differentiable at a point z, and c is a
complex constant, then

d { f(z;} _9(9)f'(2)- f(2)g'(2)

oo, Yet@)=ct(z) [o(@)F

o« £ 1(9(2)= (00
—[f(@)+9(2)]=f'(2)+9'(2)

dz
L f(2)o@)= 1@eC)+ 1)) 2 =ne

37
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Functions of a Complex o RS

Variable :

Ex. Differentiate f (z) = 3z* — 5z° + 2z.
= f'(2)=3-42>-5-32* +2=127> 152" + 2

2
Ex. Differentiate f(z)= -
47 +1
= £/(2)= (42+1)-22-2°-4 _ 42% +2z
(4z+1) (4z+1)

e In order for f to be differentiable at z,, (9) must
approach the same complex number from any
direction.

38
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Functions of a Complex & dxnsan
Variable

Ex. Show that f (z) = x + 14y is nowhere
differentiable.

= With Az = Ax + 1Ay, we have
f(z+Az)- f(z)
= (X + AX)+ 4i(y + Ay) — X — 4iy = AX + 4iAy
im f(z+Az)-f(z) _ jim AXCH4iAY
Az—0 AZ Az—0 AX-I-lAy

Let Az — 0 along a line parallel to x-axis
Let Az — 0 along a line parallel to y-axis

39
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A function f (z) Is said to be analytic at a point z,
If f is differentiable at z, & at every point in some
neighborhood of z,.

fi1s analytic in a domain D if it is analytic at every
point in D.

Ex. f (2) = |z|? is differentiable only at z = 0.

EX. g(z) = z2 is differentiable at every point z in the
complex plane.

A function that is analytic everywhere is said to be
an entire function. 0
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Functions of a Complex & dxnsan
Variable

e A number c is a zero of a polynomial function
fif and only if z —c Is a factor of f (z).

Ex.f(z2)=z2-22+2=(z-1-1)(z-1+1).
Ex. Find the value of the limit.

i 202242 (z-1-i)z-1+i)
i 7221 o [z - (1+i0)]z - (-1-1)]
z=1+1 21 141

= |lim - — — = —
oz 4140 2(0+i0) 2

41
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Cauchy-Riemann Equations

Suppose f (z2) = u(x, y) + iv(x, y) Is differentiable at a
point z = x +1y. Then at z the 1st-order partial
derivatives of u & v exist and satisfy the Cauchy-
Riemann equations gy a\/ 6u a\/

and —=-— (10)
(Proof) 2 ﬁy ﬁy 8X
/(2)= lim f(z+Az)- f(z)
Az—0 Az
_im U(X + AX, y + Ay )+iv(Xx + AX, y + Ay)—u(x, y)—iv(x, y)
AZ—0 AX +1AY
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Cauchy-Riemann Equations

Since the limit exists. Az can approach zero from
any direction. In ;))articular, If Az — 0 horizontally,

f’(z): lim U(X‘l'AX; y _U(X, Y)H lim V(X+AX, y)—V(X, y)
AX—0 AX AX—>0 AX
:a_u_|_i@ ...... (11)
OX  OX

If we let Az — 0 vertically,

f1(z)= lim YUY FAY) Ul y) g VI Y+ AY)-v(x y)
Ay—0 |Ay Ay—0 |Ay

43



Cauchy-Riemann Equations
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If f Is analytic throughout a domain D, then the
real functions u & v must satisfy (10) at every
point in D.

Ex. Polynomial f (z) = z° + z is analytic for all z.
f(z)= (x2 —y’+ x)+ i(2xy +y)=u(x, y)+iv(x,y)
:>a—u=2x+1:g and a—u:—Zy:—@

OX oy oy OX

Ex. Show that f (z) = (2x? + y) + i(y? — X) iS not

analytic at any point.

44
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Cauchy-Riemann Equations

8_u_4x and N _ =2V
OX oy
= ou 8v
—=1land —=-1
oy oX
We see that a_u:_@ but that ou av 1S
oy OX OX 8y

satisfied only on the line y = 2x.
-> fIs nowhere analytic.

45
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Cauchy-Riemann Equations

Suppose the real-valued functions u & v are
continuous and have continuous 1st-order
partial derivatives in a domain D. If u & v satisfy
the Cauchy-Riemann equations at all points of D,
then f (z) = u(x, y) + i1v(x, y) is analytic in D.
X :

Ex. For f(2)=————i—

X“+Yy X" +Yy

ou  y'-x* v g U2y ov
OX

OX (x2+y2)2 oy oy (x2+y2)2

> we have
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Cauchy-Riemann Equations

e (11) & (12) were obtained under the basic

assumption that f was differentiable at z.

e Thus, £/(2)=LM4iNM_N ;N (13)

oXx Ox oy oy

EX. f (z) = 22 is differentiable for all z

u(x,y)=x>-y JENCLIS.
: OX - f(z)=2x+i2y =2z

oV
| INY = — = 2
\V(X y)=2xy ~ =2y

47
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Cauchy-Riemann Equations

e |f the real-valued functions u & v are
continuous & have continuous 1st-order
derivatives in a neighborhood of zand if u & v
satisfy (10) at z, then f(z) = u(x, y) + iv(x, y) IS
differentiable at z & f7(z) is given by (13).

Ex. f (z) = x> — iy? is nowhere analytic.

ou oV 2y 8_u:O’ @—O

OX oy oy oX
(10) are satisfied only when y = —x. On that
line (13) gives f"(z) = 2x = —2y. "

U
\
[
\
[
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Cauchy-Riemann Equations :

o Areal-valued fx ¢(x, y) that has continuous 2nd-
order partial derivatives in a domain D & satisfies
Laplace equation is said to be harmonic in D.

o I (2) =u(XYy)+ v(X, y) IS analytic in a domain
D. then u & v are harmonic functions.
(proof)

e Assume u & v have continuous 2nd-order partial
derivatives. Since f is analytic, (10) are satisfied.

ou ov__ o0u o ang Y _ o’u %

= — R
OX oy oxE OXOY oy  OXx oy®  OyoX
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Cauchy-Riemann Equations

Adding these two equations gives 0°U N o°u 0

ox> oy’
This shows that u(x, y) is harmonic. Similarly, we
can obtain o°v  0°v

+ =0
aXZ ayZ
e If u(x, y) is a given fx harmonic in D, it is
sometimes possible to find another fx v(x, y)

that is harmonic in D so that u(x, y) + iv(x, y) Is
an analytic fx in D. v is called a conjugate

harmonic function of u. N
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Cauchy-Riemann Equations

Ex. (a) Verify that u(x, y) = x3 — 3xy? — 5y is
harmonic in the entire complex plane. (b) Find
the conjugate harmonic fx of u.

a) ( 2
@) a—u:3x2—3y2, @—l:=6x
) OX gx
a—u:—6xy—5, a—l::—6x
L0y oy
2 2
:>8u ou =6X—-6x=0

OX°  oy° )



Cauchy-Riemann Equations

thiumal Taiwan University

eeeeeeeeeeee

%kﬁﬂﬁ?ﬂﬁﬁ
L

(

n) Since v must satisfy (10), we must have
oV du > oo ) ;
—=—=3X"-3y" = V(X,y)=3X"y -y +h(X
5 ox y* =v(x,y)=3x"y -y’ +h(x)
NN _(6xy-5)

| OX 8y

_ N

= 6xy +h'(x)=6xy +5

OX
= h'(x)=5, h(x)=5x+C
~V(x,y)=3x"y - y*+5x+C )
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Cauchy-Riemann Equations

e Suppose u & v are the harmonic fxs forming
the real & imaginary parts of an analytic fx f (z).
The level curves u(x, y) =c,; & v(X,y) = ¢, form
two orthogonal families of curves.

EX.f(z)=z=x+1ly—>x=¢, &Yy =0¢C,.
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Functions

In real variables, f (X) = e* has the properties
f'(x)=f(x) and f(x +x,)=f(x)f(x,)

For Euler’s formula,

e¥ =cosy+isiny, yareal number

For z=x+1y, it is natural to expect that

" =g =e*(cosy +isiny)

The exponential fx of a complex variable z is
defined as gz _ g% — oX(cos y +isin y)---(14)
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Functions

Ex. Evaluate el 7421,
—>Xx=1.7 and y=4.2

= e =¢e'"(cos4.2 +isin4.2) = —2.6837 — 4.7710

e Re(e?) = u(x,y) = e*cos y & Im(e?) = v(x,y) = e*siny
are continuous & have continuous 1st partial
derivatives at every point z of the complex
plane. Moreover, (10) are satisfied at all points.

ou oV ou - oV
= —=e cosy=— and —=-e"siny=—

OX oy oy ox
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Functions

e Thus, f (z) = e? Is analytic for all z; in other
words, f Is an entire function.

e The derivative of f can be obtained via (11).

()= M i e i(e* sin v) =
f(z)_8x+lax_e cosy +ile*siny)= f(z)
d Z Z
—e'=¢g
dz

o Ifz, =x, +1y, & 2, = X, +1y,, we can have
f(z,)f(z,)=e"(cosy, +isiny, )e*(cosy, +isiny,)
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Functions

f(z,)f(z,)=e""[(cosy,cosy, —siny,siny,)
+i(sin y, cosy, +cosy,siny, )]

=e"[cos(y, +Y,)+isin(y, +y,)]
= f(z,+2,)

L1+

X1 +Xo

Z

c.ete? =g
e Similarly, one can prove that

7

— i %
e
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Functions

f (z) = e?iIs periodic with the complex period 2.

e =cos2z +isin2xr =1
= e™*" =¢’e”™ =¢* forallz
- f(z+24)=1(z)
Divide the complex plane into
2n-Vzr<y<(2n+1)z
wheren=0,+1,+2,---
f(z)=f(z+24)=f(z+4n)="-

fy

¢ | 37
zZ + 2m
o
¢ me
o
x
. -
¢ | =
zZ— 2m
L ]
—37TZ 58
(D) BY-NC-SA |
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Exponential & Logarithmic & sxauxsn

Functions -

e The strip —z<y < ris called the fundamental
region for f (z) = e
e The flow over the fundamental region.

. . . . .WZ- —_ —
. . . . . NN
20 :
...... s/
'!JO_ L L
...... \\
ol l)
‘ s
-4 ' ' : 59
4 -2 0
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Functions

Using (6), z=r(cos@+ising). e’ =cos@+isiné
sz=re’

EX. Find the steady-state current I(t) in an RLC
series circulit.
1 dg

2
d ?+Rd—q+—q:Eosina)t and | =—
dt dt C dt

dl 1 :
—L—+Rl+=g=ImE.e'
dt Cq (0 ) ’

L
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Functions .

Assume I(t) = Im(l, e 1.
:[ij+R+_ij|O:EO

JaC
= Eo _ Eo _Eo
- 0 T . 1 - 1 Z
0)L+R+_— R-|— a)L__
| joC J( wcj

where Z = \Z\ew \/RZ (a)L _ijze“a”ﬂ“*wlcj/ﬂ
@C

E,
S ()= Im[ e ‘Qe’“") )
Z
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Functions

Logarithm of a complex number z (z # 0) is defined
as the inverse of the exponential function.

w=Inz if z=e" -.-(15)

To find the real & imaginary parts of In z

z=x+iy=e"=e"" =¢"(cosv+isinv)

— X=e" cosv and y=e"sinv

( 2

x*+y?=e* =|z[" =e* ..u=log,|Z

— y
—=tfanv < v=0=argz 2
| X
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Functions

e Forz=0and 0= arg(z)
Inz=log,|z|+i(0+2nx) forn=0,£1,+2,... ---(16)

Note that there are infinitely many values of the
logarithm of a complex number z.

Ex. Evaluate (a) In(-2) and (b) In(-1 —1).
(a) @=arg(—2)=7r and log,|-2|=0.6932
. In(=2)=0.6932 +i(z + 2nr)
(b) @=arg(~1-i)=5z/4 and log,|-1-i = log, v'2 = 0.3466
. In(-1-1)=0.3466 +i(57/4+ 2nr) .
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Functions

As a consequence of (16), the logarithm of a
positive real number has many values.

With the principal argument of a complex number,

Arg(z), in the interval (—mr, n], we can define the
principal value of Inz as

Lnz=log,|z|+i Argz---(17)
Ex. Evaluate (a) Ln(-2) & (b) Ln(-1 —1).
(a) #=Arg(-2)=7 ..Ln(-2)=0.6932+ 7
(b) =Arg(-1-i)=-37/4 ..Ln(-1-i)=0.3466—i(37/4)
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Functions

e (16) can be Iinterpreted as an infinite
collection of logarithmic functions. Each fx in
the collection is called a branch of In z.

e f(z) =Lnzis called the principal branch of
In z or the principal logarithmic function.

e Some familiar properties hold in the complex
case: (In(z,z,)=Inz, +Inz,

Z
In| =+ [=Inz,—Inz,
27 -

N
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Functions .

Ex.Forz,=1&z,=-1+1,

Ln(z,2,)=Ln(-1-i)= 03466—|377Z

Lnz, + Lnz, = (0+ i %j (o 3466 + | 37”)

—03466+|5T7T¢ Ln(z,z,)

66
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Functions

f (z) = Ln z is not continuous at z = 0 since f (0) Is
not defined.

f (z) = Ln z is discontinuous at all points of the
negative real axis because Im[f (z)] =v = Arg(z) is
discontinuous at these points.

For X, on the negative real axis, as z — x, from the

upper half-plane, Arg(z) —» =, whereas as z — x,
from the lower half-plane, Arg(z) > —x.

Thus, f(z) = Lnzis NOT analytic on the
nonpositive real axis.

67
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Functions

However, f (z) = Ln z is analytic throughout the
domain D consisting of all the points in the
complex plane except the nonpositive real axis.

Since f (z) = Ln z is the principal branch of In z, the
nonpositive real axis is referred to as a branch

cut for the function. Ay

(10) is satisfied throughout D.

Also,

d 1 ; ‘ -
—Lnz== forallzinD  Praucheut !
dz Z
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Functions .

e The figure shows w=_Lnz as a flow.

4

ST s
91 /////////

////‘f///,v

N
Yo

SR EA
DY SR

NN T T
L NN NS S
429 0 y 4

T (@) BY-NC-SA |
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Functions

Define complex powers of a complex number.

If aIs a complex number & z=Xx + 1y,

z* =e“" forz#0 ---(18)

Since In z is multiple-valued, z# is multiple-valued.
However, when « = n (integer), (18) Is single-
valued since there is only one value for z2, z3, z71...
Ex. Suppose a=2 &z =rel?

e2|nz _ eZ(Ioger+i(6?+2k7z)) _ ezlogerezieemm _ rzeieeia 1

=re'’ -re'’ = z° "
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Functions

If we use Ln z in place of In z, (18) gives the
principal values of z«.
Ex. Evaluate 2.
z=I, argz=7x/2, a =2
— i2i _ e2i[|ogel+i(7z/2+2n7r)] _ e—(l+4n)7z nN=0+1+2 -..
i2' is real for every value of n.
Since Arg(z) = /2, we obtain the principal value of
12 for n = 0.

—i% =e” =0.043

71
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Functions

o
For a real variable X, |
e” =cosx+isinx and e =cosx—isin X
_ eix . e—ix eix 4 e—ix
= SIiN X = v and coS X =
|

Similarly, for a complex number z = x + 1y,

_ eiz . e—iz eiz i e—iz
sinz=-————— and coSZ = .--(19)

2l
SIN Z 1 1 1
tanz=—, COlz=——, SECZ=——, CSCZ = —

COS Z tan z COSZ sin z
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Functions s

e Since ez & ez are entire functions, it follows that
sinz & cos z are entire functions.

e Notethatsinz=0only forz=nz& cosz =0 only
forz=(2n + 1)a/2. Thus, tan z & sec z are analytic
exceptatz=(2n+1)a/2, and cot z & csc z are
analytic except at z=nx.
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Functions

o
Since (d/dz)e? = e?, we have (d/dz)e” = ie"? and
(d/dz)e 'z = —je .
d _ d eiz . e—iz eiz 4 e—iz
—> —SINZ = - = = C0S Z
dz dz 2i 2
d . d .
—SINZ =C0SZ —CO0SZ=-SINZ
dz dz
d 2 d 2
—tan z = sec’ z —cotz=-csc’z  ---(20)
dz dz
d d
—Secz=secztanz —CSCz=—-CSczcotz 74

dz dz
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Functions

Same Iin the complex case.
sin(—z)=—sinz

cos(—z)=cosz

cos® z+sin“z =1

sin(z, +z,)=sin z,€os z, £ cos z, Sin z,
cos(z, +z,)=cosz,cosz, Fsinz,sinz,
SIN2z = 2SIN ZCOS Z

CO0S2Z = COS° Z —Sin® z 7
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Functions

e Ifyisreal, the hyperbollc sine & cosine are
e —e e’ +e”’
sinhy = > and coshy =

e From (19) & Euler’s formula
ol i(x+iy) e—l(x+|y)

21

. el +e7 ) . el —e™
=sin X +1C0S X
2 2

'sinz =sin xcosh y +icosxsinh y (21)
C0SZ=CosXcoshy—isinxsinhy

=SINZ =

76
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Functions

e From (21),
1=cosh? y—sinh?y---(22)
sin z\z =sin® x-cosh® y +cos” x-sinh® y
=sin’ x(1+sinh2 y)+ cos’ X-sinh® y
=sin® x+sinh® y---(23)

cosz|” =cos® x+sinh? y---(24)

77



lllllllllllllllllllllllll

Trigonometric & Hyperbolic # #xussn

Functions .

o A complex number z is zero iff |z]? = 0.

e To have sin z =0, we must have sin?x + sinh?y = 0.
from (23). This implies that sin x =0 & sinh y =0,
andsox=nz&y=0.

- Zeros ofsinzarez=x+1y=nx, where n =0, £1,
+2, ...

o Similarly, zeros of cos z are z = (2n + 1) /2, where
n=0,=+1, £2, ...

78
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Functions

Ex. Evaluate sin(2 +1).
= sin(2+i)=sin2cosh1+icos2sinh1=1.4031-0.4891i

Ex. Solve the equation cos z = 10.

eiz_|_e—iz
— C0SZ = > =10

— e°”* —20e" +1=0

— e =10+34/11

:>iz:loge(10i3\/ﬂ)+2n7zi forn=0,+1+2,---
.'.z:2n7z$iloge(10+3\/ﬁ) forn=0,+1,+2,---"
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Functions

For any complex num

perz=x + 1y,

sinh z = _2 and coshz="—""— ...(25)
Also, :
tanh z = Smnz coth z = t 1h
COSi Z anl Z (26)
sech z = csch z = —
cosh z sinh z
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Functions

Hyperbolic sine & cosine are entire functions.

Functions of (26) are analytic except at points
where the denominators are zero.

From (25), it is easy to see that

Y sinhz=coshz and 2 coshz =sinhz .--(27)
dz dz

Trigonometric & hyperbolic functions are related in
complex calculus.

sinz = —isinh(iz), cosz =cosh(iz) ---(28)
sinh z = —isin(iz), coshz=cos(iz) ---(29)

81
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Functions

Zeros of sinh z & cosh z are pure imaginary and are

respectively,
z=nz and z_(2n+1)— forn=0,+1+2,.

Also, note that 2
sinh z = —isin(iz) = —isin(- y +ix)

= —i[sin(- y)cosh x +i cos(- y)sinh x]

= —i[—sin y cosh x +i cos ysinh x]
~.sinh z =sinh xcos y +i cosh xsin y ---(30)
Similarly, cosh z = cosh xcos y +isinh xsin y---(31)
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Functions

From (21),
sin(z + 27z ) =sin(x + 27 +iy)
= sin(x + 27 )cosh y +icos(x + 27 )sinh y
=SIn Xcosh y +1cos xsinh y =sin z
cos(z +27)=cosz
From (30) & (31),
sinh(z + 27 ) = sinh(x + iy + 27i )
= sinh x cos(y + 27 )+icosh xsin(y + 277) = sinh z
cosh(z + 27i) = cosh z

83
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Hyperbolic Functions

e Since the inverse of these analytic functions
are multiple-valued functions, they do NOT
possess inverse functions in its strictest
Interpretation.

Def. w=sin"z if z=sinw
eiw_e—iw _ o
= =1 = e —2ijze"™ -1=0
i

— e —jz +(1— zz)v2 S.sinTtz = In[iz +(1— zz)'ﬁ]
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Inverse Trigonometric & & sxnxan
Hyperbolic Functions

o
eiw_|_e—iw _ _
> —7 =e"_272e"+1=0
- 2 _ . . 2
= e" =z+(22—1)'/ ;. COS 12:—|In[z+|(1—22)u ]
o
eiw_e—iw _ - |
= =7 :>e2'W—1=|z(e2'W+1)
e
141z ~ —1, 1—-z2 1., 1+Z
—e"=""" -tantz=—1In —_|In—=

1-1z 2 1+z 2 1-z,
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Inverse Trigonometric & " ki
Hyperbolic Functions

Ex. Find all values of sin™+/5

sin /5 =—iIn f|+( —(ﬁ)zjm_
:_||n[f|+2|] —|In[(\f+2)

Ioge(fiz)+(5+2nnjl_, N=0,+1+2,...

:%+2n7z$i Ioge(\@+2)
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Hyperbolic Functions

To find the derivative of w =sin1z, we begin by
differentiating z = sin w:
iz—isinw :>dW— L = __ 1
dz  dz dz cosw (1—sin2 W)VZ (1_ 22)]/2

d . _
—sintz=

1
dz (1_22)l/2

icos‘lz_ and itan 1, _ 1

0z (1 Z)]/ 1+2°
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Hyperbolic Functions -

Ex. Find the derivative of w =sin1z at z = \@
dw 1 1 1 $_|

I = — -
dz

e (1_(\@)272 (C4y? "2 2
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Hyperbolic Functions

sinh ™ z = In[z +(z2 +1)'/2] isinh‘l 7 =

(z2 )”
cosh™ z_In[z+(z —1)'/] —cosh 7=
1. 1+7z d

(2 —1)”2
tanh?z==In—= — tanhtz= .
2 1-z dz 1-72

Ex. Find all values of cosh-1(-1)
cosh™(—=1)=In(-1)=log, 1+ (7 + 2nx)

=(2n+1)zd, n=0,£1,+2,... °
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