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Complex Numbers 
 Solve the quadratic equation                              

 
 
 Define imaginary unit i by i2 = −1 

 Def. A complex number is any number of the 
form z = a + ib where a & b are real numbers 
and i is the imaginary unit. 
 Real part  Re(z) = a 
 Imaginary part  Im(z) = b 
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Complex Numbers 
 Def. Complex numbers z1 & z2 are equal if 

Re(z1) = Re(z2) & Im(z1) = Im(z2). 
 A complex number z = 0 if Re(z) = 0 & Im(z) = 0. 

 If z1 = x1 + iy1 & z2 = x2 + iy2  
 Addition: z1 + z2 = (x1 + x2) + i(y1 + y2) 
 Subtraction: z1 − z2 = (x1 − x2) + i(y1 − y2) 
 Multiplication: 
        z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2− y1y2) + i(y1x2 + x1y2) 
 Division: 
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Complex Numbers 
 Familiar laws hold for complex numbers 
 Commutative laws: 

 

 Associative laws: 
 

 Distributive law: 
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Complex Numbers 
 Complex conjugate 
 If z = x + iy, then the conjugate of z is 
 It is very easy to show that 

 
 
 
 

 The sum & product of a conjugate pair are real 
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Complex Numbers 
 Difference between a conjugate pair is imaginary 

 
 (1) & (3) yield two useful formulas 

 
 

 Division of complex numbers using (2) 
 
 

   Ex. If z1 = 2 − 3i & z2 = 4 + 6i , find      & 
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Complex Numbers 
 Geometric interpretation 
 A complex number z = x + iy is uniquely determined 

by an ordered pair of real numbers (x, y). 
   Ex. The ordered pair (2, −3) corresponds to the 

complex number z = 2 − 3i. 
 One can associate a complex number 
     z = x + iy with a point (x, y) in a 
    coordinate plane. 
 The complex number can also 
    be viewed as a vector from the  
    origin to the terminal point (x, y). 8 
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Complex Numbers 
 Def. Modulus or absolute value of z = x + iy, 

denoted by |z| , is the real number 
 

 Sum of the vectors z1 & z2 is the vector z1 + z2. 
And we have 
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 Polar form 
 Rectangular coordinate (x, y) and polar coordinate 

(r, θ) are related by x = r cosθ & y = r sinθ. 
 A nonzero complex number z = x + iy can be 

written as z = (r cosθ) + i(r sinθ) or 
 

 Polar form of complex number z 
 
 

Powers and Roots 
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Powers and Roots 
 Argument of a complex number in the interval 
−π < θ ≤ π is called the principal argument of 
z and is denoted by Arg(z). 

   Ex. Arg(i) = π/2. 
   Ex. Express                 in polar form. 
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Powers and Roots 
 The principal argument of z is 

 
   Thus, an alternative polar form 
   of the complex number is 
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Powers and Roots 
 Multiplication & division 
 It is very convenient to use the polar form. 
 Suppose 
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Powers and Roots 
 
 
 
 
 
 
 

 It is NOT true that ( ) ( ) ( )
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Powers and Roots 
 Powers of z 
 Integer powers of the complex number z 

 
 
 

 Moreover, 
 
 

 For any integer n: 

( ) ( )[ ]θθ 2sin2cos1 2
2

2 −+−== −− ir
z

z

( ) ( )[ ] ( )
( )



θθ

θθθθθθ

3sin3cos
2sin2cossincos

323

222

irzzz
irirz

+==

+=+++=

[ ]θθ ninrz nn sincos +=
15 



Powers and Roots 
 Roots 
 w is said to be an n-th root of z if 
 Let 

 
 
 
 
 

 As k = 0, 1, 2, …, n − 1, we obtain n distinct roots 
with the same modulus but different arguments. 

zwn =
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( ) ( )









=
=

=⇒=
⇒

+=+=⇒

θφ
θφ

ρρ

θθφφρ

sinsin
coscos

sincossincos
1

n
n

rr

irninw
nn

nn

n
kkn πθφπθφ 2   2 +

=∴+=

16 



Powers and Roots 
 For k = n + m, where m = 0, 1, 2, …. Then 

 
 
 
 

 To summarize, the n-th root of a nonzero complex 
number z = r(cosθ + i sinθ) are given by 

( )







 +

=





 +

=⇒

+
+

=
++

=

n
m

n
m

n
m

n
mn

πθφπθφ

ππθπθφ

2coscos  ,2sinsin

222

1 , ,2 ,1 ,0 where

2sin2cos1

−=















 +

+





 +

=

nk
n

ki
n

krw n
k



πθπθ

17 



Powers and Roots 
 Ex. Find the three cube roots of z = i. 
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Powers and Roots 
 Principal n-th root of z: the root w of z obtained 

by using the principal argument of z with k = 0. 
 The n roots of the nonzero z lie on a circle of 

radius        centered at the origin in the complex 
plane and are equally spaced on this circle. 

   Ex. Find the four fourth roots of z = 1 + i. 
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Sets in Complex Plane 
 Since                                                is the 

distance between the points z = x + iy and z0 = 
x0 + iy0, the points z satisfying the equation 
 

   lie on a circle of radius ρ centered at z0. 
 Ex. |z| = 1 
 Ex. |z − 1 − 2i| = 5 

 The points z satisfying |z − z0| < ρ lie                 
within, but not on, a circle of radius                
ρ centered at z0. 
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Sets in Complex Plane 
 z0 is said to be an interior point of a set S of 

the complex plane if there exists some 
neighborhood of z0 that lies entirely within S. 

 If every point z of a set S is an interior point, 
then S is said to be an open set. 
Ex. Re(z) > 1 defines a right half-plane. 
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Sets in Complex Plane 

Open annulus 
22 
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Sets in Complex Plane 
 If every neighborhood of z0 contains at least 

one point that is in S & at least one point that 
is not in S  z0 is a boundary point of S. 

 Boundary of a set S is the set of all boundary 
points of S. 

   Ex. For Re(z) ≥ 1, the points on Re(z) = 1 are 
boundary points. 

23 



Sets in Complex Plane 
 If any two points z1 & z2 in a set S can be 

connected by a polygonal line that lies entirely 
in S  S is a connected set. 

 An open connected set is called a domain. 
   Ex. The set Re(z) ≠ 4 is open but not 

connected. 
 Region is a domain in the complex         

plane with all, some, or none of its     
boundary points. 

24 
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Functions of a Complex 
Variable 
 Function f from a set A to a set B is a rule of 

correspondence that assigns to each element 
in A one and only one element in B. 
 b = f (a) ⇔ b is the image of a 
 Domain & range of the function f 

   Ex. A set of real numbers A: 3 ≤ x < ∞ & the 
function given by  

    the range of f : 0 ≤ y < ∞ 
    f is a function of a real variable x. 

( ) 3−= xxf
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Functions of a Complex 
Variable 
 When the domain A is a set of complex 

numbers z → f is said to be a function of a 
complex variable z. 

 The image w of z will be complex, too. 
 

   where u = Re(w) & v = Im(w) are real-valued 
functions. 

   Ex.  
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Functions of a Complex 
Variable 
 A complex function w = f (z) can be interpreted 

as a mapping or transformation from the z-
plane to the w-plane. 
 
 

27 

http://creativecommons.org/licenses/by-nc-sa/3.0/tw/


   Ex. Find the image of the line Re(z) = 1 under 
the mapping f (z) = z2. 

 
 
 
 
 
 
 

Functions of a Complex 
Variable 
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Functions of a Complex 
Variable 
 Complex function w = f (z) is completely 

determined by real-valued functions u(x, y) & 
v(x, y), even though u + iv may not be 
obtainable via familiar operations on z alone. 

   Ex. f (z) = xy2 + i(x2 − 4y3) 
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30 

 We also may interpret w = f (z) as a 2-D fluid 
flow by considering f (z) as a vector based at 
the point z. 

Functions of a Complex 
Variable 
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Functions of a Complex 
Variable 
 If x(t) + iy(t) is a parametric representation for 

the path of the flow, 

                            must coincide with     

 When f (z) = u(x, y) + iv(x, y), the path of the 
flow satisfies 
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Functions of a Complex 
Variable 
 Find the streamlines of the flows. 
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Functions of a Complex 
Variable 
 Limit of a function 
 Suppose f is defined in some neighborhood of z0, 

except possibly at z0 itself. f is said to possess a 
limit at z0, 
 

 For each ε > 0, there                                       
exists a δ > 0 such that                                           
|f (z) − L| < ε whenever                                             
0 < |z − z0| < δ. 
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Functions of a Complex 
Variable 
 Limit of sum, product, quotient 
 Suppose 
 Then 
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Functions of a Complex 
Variable 
 Continuity at a point 
 A function f is continuous at z0 if 
 

 A function f defined by 
 

   where n is a nonnegative integer & ai (i = 0, 
1, …, n) are complex constants, is called a 
polynomial of degree n. 
 A polynomial is continuous everywhere. 
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Functions of a Complex 
Variable 
 A rational function 

   where g & h are polynomial functions, is 
continuous except at points at which h(z) = 0. 
 

 Derivative 
 Suppose f is defined in a neighborhood of z0. 

( ) ( ) ( ) ( )

yixz
z

zfzzfzf
z

∆+∆=∆
∆

−∆+
=′⇒

→∆

       where

9lim 00

00 

( ) ( )
( )zh
zgzf =

36 



Functions of a Complex 
Variable 
 If f is differentiable at z0, then f is continuous at z0. 
 If f & g are differentiable at a point z, and c is a 

complex constant, then 
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Functions of a Complex 
Variable 

    Ex. Differentiate f (z) = 3z4 − 5z3 + 2z. 
 

    Ex. Differentiate 

 

 In order for f to be differentiable at z0, (9) must 
approach the same complex number from any 
direction. 
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Functions of a Complex 
Variable 

    Ex. Show that f (z) = x + i4y is nowhere 
differentiable. 

⇒ With ∆z = ∆x + i∆y, we have 
 
 
 
 

    Let ∆z → 0 along a line parallel to x-axis 
    Let ∆z → 0 along a line parallel to y-axis 

( ) ( )
( )

( ) ( )
yix
yix

z
zfzzf

yixiyxyyixx
zfzzf

zz ∆+∆
∆+∆

=
∆

−∆+
∴

∆+∆=−−∆++∆+=
−∆+

→∆→∆

4limlim

44)(4

00

39 



Functions of a Complex 
Variable 
 Analytic functions 
 A function f (z) is said to be analytic at a point z0 

if f is differentiable at z0 & at every point in some 
neighborhood of z0. 

 f is analytic in a domain D if it is analytic at every 
point in D. 

    Ex. f (z) = |z|2 is differentiable only at z = 0. 
    Ex. g(z) = z2 is differentiable at every point z in the 

complex plane. 
 A function that is analytic everywhere is said to be 

an entire function. 40 



Functions of a Complex 
Variable 
 A number c is a zero of a polynomial function 

f if and only if z − c is a factor of f (z). 
   Ex. f (z) = z2 − 2z + 2 = (z − 1 − i)(z − 1 + i). 
   Ex. Find the value of the limit. 
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Cauchy-Riemann Equations 
 A necessary condition for analyticity 
 Suppose f (z) = u(x, y) + iv(x, y) is differentiable at a 

point z = x + iy. Then at z the 1st-order partial 
derivatives of u & v exist and satisfy the Cauchy-
Riemann equations 
 

   (Proof) 
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Cauchy-Riemann Equations 
 Since the limit exists. ∆z can approach zero from 

any direction. In particular, if ∆z → 0 horizontally, 
 
 
 

 If we let ∆z → 0 vertically, 
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Cauchy-Riemann Equations 
 If f is analytic throughout a domain D, then the 

real functions u & v must satisfy (10) at every 
point in D. 

   Ex. Polynomial f (z) = z2 + z is analytic for all z. 
 
 
 

   Ex. Show that f (z) = (2x2 + y) + i(y2 − x) is not 
analytic at any point. 
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Cauchy-Riemann Equations 
 
 
 
 

   We see that                 but that               is 

   satisfied only on the line y = 2x. 
    f is nowhere analytic.  
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Cauchy-Riemann Equations 
 Criterion for analyticity 
 Suppose the real-valued functions u & v are 

continuous and have continuous 1st-order 
partial derivatives in a domain D. If u & v satisfy 
the Cauchy-Riemann equations at all points of D, 
then f (z) = u(x, y) + iv(x, y) is analytic in D. 

 Ex. For                                              we have  ( ) 2222 yx
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Cauchy-Riemann Equations 
 (11) & (12) were obtained under the basic 

assumption that f was differentiable at z. 

 Thus, 

   Ex. f (z) = z2 is differentiable for all z. 
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Cauchy-Riemann Equations 
 If the real-valued functions u & v are 

continuous & have continuous 1st-order 
derivatives in a neighborhood of z and if u & v 
satisfy (10) at z, then f (z) = u(x, y) + iv(x, y) is 
differentiable at z & f′ (z) is given by (13). 

   Ex. f (z) = x2 − iy2 is nowhere analytic. 
 

   (10) are satisfied only when y = −x. On that 
line (13) gives f′ (z) = 2x = − 2y. 
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Cauchy-Riemann Equations 
 Harmonic functions 
 A real-valued fx φ(x, y) that has continuous 2nd-

order partial derivatives in a domain D & satisfies 
Laplace equation is said to be harmonic in D. 

 If f (z) = u(x, y) + iv(x, y) is analytic in a domain 
D, then u & v are harmonic functions. 

   (proof) 
 Assume u & v have continuous 2nd-order partial 

derivatives. Since f is analytic, (10) are satisfied. 
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Cauchy-Riemann Equations 
 Adding these two equations gives 

 
 This shows that u(x, y) is harmonic. Similarly, we 

can obtain 
 

 If u(x, y) is a given fx harmonic in D, it is 
sometimes possible to find another fx v(x, y) 
that is harmonic in D so that u(x, y) + iv(x, y) is 
an analytic fx in D. v is called a conjugate 
harmonic function of u. 
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Cauchy-Riemann Equations 
   Ex. (a) Verify that u(x, y) = x3 − 3xy2 − 5y is 

harmonic in the entire complex plane. (b) Find 
the conjugate harmonic fx of u. 

   (a) 
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Cauchy-Riemann Equations 
   (b) Since v must satisfy (10), we must have 
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Cauchy-Riemann Equations 
 Suppose u & v are the harmonic fxs forming 

the real & imaginary parts of an analytic fx f (z). 
The level curves u(x, y) = c1 & v(x, y) = c2 form 
two orthogonal families of curves. 

   Ex. f (z) = z = x + iy → x = c1 & y = c2. 

53 



Exponential & Logarithmic 
Functions 
 Exponential function 
 In real variables, f (x) = ex has the properties 
 
 For Euler’s formula, 

 
 For z = x + iy, it is natural to expect that 

 
 The exponential fx of a complex variable z is 

defined as 

( ) ( ) ( ) ( ) ( )2121  and  xfxfxxfxfxf =+=′

( ) ( )14sincos yiyeee xiyxz +== +

number real a      ,sincos yyiyeiy +=

( )yiyeeee xiyxiyx sincos +==+
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Exponential & Logarithmic 
Functions 
   Ex. Evaluate e1.7+4.2i. 

 
 

 Re(ez) = u(x,y) = excos y & Im(ez) = v(x,y) = exsin y 
are continuous & have continuous 1st partial 
derivatives at every point z of the complex 
plane. Moreover, (10) are satisfied at all points. 
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Exponential & Logarithmic 
Functions 
 Thus, f (z) = ez is analytic for all z; in other 

words, f is an entire function. 
 The derivative of f can be obtained via (11). 

 
 
 

 If z1 = x1 + iy1 & z2 = x2 + iy2, we can have 
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Exponential & Logarithmic 
Functions 
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Exponential & Logarithmic 
Functions 
 Periodicity 
 f (z) = ez is periodic with the complex period 2πi. 

 
 
 
 

 Divide the complex plane into 
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Exponential & Logarithmic 
Functions 
 The strip −π < y ≤ π is called the fundamental 

region for f (z) = ez. 
 The flow over the fundamental region. 
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Exponential & Logarithmic 
Functions 
 Polar form of a complex number 
 Using (6), z = r(cosθ + i sinθ). 

 
 

    Ex. Find the steady-state current I(t) in an RLC 
series circuit. 
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Exponential & Logarithmic 
Functions 

   Assume I(t) = Im(I0 e jωt). 
 
 
 
 
 
 
 

( ) 









=∴







 −+==

=






 −+

=
++

=∴

=







++⇒

−















 −−

tjj

R
C

Lj
j

ee
Z
EtI

e
C

LReZZ

Z
E

C
LjR

E

Cj
RLj

EI

EI
Cj

RLj

ωθ

ω
ω

θ

ω
ω

ω
ω

ω
ω

ω
ω

0

1tan2
2

000
0

00

Im

1 where

11

1

1

61 



Exponential & Logarithmic 
Functions 
 Logarithmic function 
 Logarithm of a complex number z (z ≠ 0) is defined 

as the inverse of the exponential function. 
 

 To find the real & imaginary parts of ln z 
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( ) ( )16    ,2 ,1 ,0for   2logln ±±=++= nnizz e πθ

Exponential & Logarithmic 
Functions 
 For z ≠ 0 and θ = arg(z) 

 
 Note that there are infinitely many values of the 

logarithm of a complex number z. 
    Ex. Evaluate (a) ln(−2) and (b) ln(−1 − i). 
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( )17 Arg logLn zizz e +=

Exponential & Logarithmic 
Functions 
 Principal value 
 As a consequence of (16), the logarithm of a 

positive real number has many values. 
 With the principal argument of a complex number, 

Arg(z), in the interval (−π, π], we can define the 
principal value of ln z as 
 

    Ex. Evaluate (a) Ln(−2) & (b) Ln(−1 − i). 
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Exponential & Logarithmic 
Functions 
 (16) can be interpreted as an infinite 

collection of logarithmic functions. Each fx in 
the collection is called a branch of ln z. 

 f (z) = Ln z is called the principal branch of   
ln z or the principal logarithmic function. 

 Some familiar properties hold in the complex 
case: ( )
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Exponential & Logarithmic 
Functions 
   Ex. For z1 = i & z2 = −1 + i, 
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Exponential & Logarithmic 
Functions 
 Analyticity 
 f (z) = Ln z is not continuous at z = 0 since f (0) is 

not defined. 
 f (z) = Ln z is discontinuous at all points of the 

negative real axis because Im[f (z)] = v = Arg(z) is 
discontinuous at these points. 
 For x0 on the negative real axis, as z → x0 from the 

upper half-plane, Arg(z) → π, whereas as z → x0 
from the lower half-plane, Arg(z) → −π. 

 Thus, f (z) = Ln z is NOT analytic on the 
nonpositive real axis. 
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Dz
z

z
dz
d in   allfor    1Ln =

Exponential & Logarithmic 
Functions 
 However, f (z) = Ln z is analytic throughout the 

domain D consisting of all the points in the 
complex plane except the nonpositive real axis. 

 Since f (z) = Ln z is the principal branch of ln z, the 
nonpositive real axis is referred to as a branch 
cut for the function. 

 (10) is satisfied throughout D. 
 Also, 
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 The figure shows w = Ln z as a flow. 

Exponential & Logarithmic 
Functions 

69 
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( )18     0for   ln
≠= zez zαα

Exponential & Logarithmic 
Functions 
 Complex powers 
 Define complex powers of a complex number. 
 If α is a complex number & z = x + iy, 

 
 Since ln z is multiple-valued, zα is multiple-valued. 
 However, when α = n (integer), (18) is single-

valued since there is only one value for z2, z3, z−1… 
    Ex. Suppose α = 2 & z = reiθ 
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Exponential & Logarithmic 
Functions 
 If we use Ln z in place of ln z, (18) gives the 

principal values of zα. 
    Ex. Evaluate i2i. 

 
 

    i2i is real for every value of n. 
    Since Arg(z) = π/2, we obtain the principal value of 

i2i for n = 0. 
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Trigonometric & Hyperbolic 
Functions 
 Trigonometric functions 
 For a real variable x, 

 
 
 

 Similarly, for a complex number z = x + iy, 
 
 ( )19   

2
cos  and  

2
sin 

iziziziz eez
i
eez

−− +
=

−
=

z
z

z
z

z
z

z
zz

sin
1csc  ,

cos
1sec  ,

tan
1cot  ,

cos
sintan ====



Trigonometric & Hyperbolic 
Functions 
 Analyticity 
 Since eiz & e−iz are entire functions, it follows that 

sin z & cos z are entire functions. 
 Note that sin z = 0 only for z = nπ & cos z = 0 only 

for z = (2n + 1)π/2. Thus, tan z & sec z are analytic 
except at z = (2n + 1)π/2, and cot z & csc z are 
analytic except at z = nπ. 
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Trigonometric & Hyperbolic 
Functions 
 Derivatives 
 Since (d/dz)ez = ez, we have (d/dz)eiz = ieiz and 

(d/dz)e−iz = −ie−iz. 
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Trigonometric & Hyperbolic 
Functions 
 Identities 
 Same in the complex case. 
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( )21   
sinhsincoshcoscos
sinhcoscoshsinsin
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Trigonometric & Hyperbolic 
Functions 
 If y is real, the hyperbolic sine & cosine are 

 

 From (19) & Euler’s formula 
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Trigonometric & Hyperbolic 
Functions 
 From (21), 
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Trigonometric & Hyperbolic 
Functions 
 Zeros 
 A complex number z is zero iff |z|2 = 0. 
 To have sin z = 0, we must have sin2x + sinh2y = 0. 

from (23). This implies that sin x = 0 & sinh y = 0, 
and so x = nπ & y = 0. 

 Zeros of sin z are z = x + iy = nπ, where n = 0, ±1, 
±2, … 

 Similarly, zeros of cos z are z = (2n + 1)π/2, where 
n = 0, ±1, ±2, … 
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Trigonometric & Hyperbolic 
Functions 
   Ex. Evaluate sin(2 + i). 

 
   Ex. Solve the equation cos z = 10. 
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( )25     
2

cosh  and  
2

sinh 
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Trigonometric & Hyperbolic 
Functions 
 Hyperbolic sine & cosine 
 For any complex number z = x + iy, 

 
 

 Also, 
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( )27   sinhcosh   and   coshsinh zz
dz
dzz

dz
d

==

Trigonometric & Hyperbolic 
Functions 
 Hyperbolic sine & cosine are entire functions. 
 Functions of (26) are analytic except at points 

where the denominators are zero. 
 From (25), it is easy to see that 

 
 

 Trigonometric & hyperbolic functions are related in 
complex calculus. 
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Trigonometric & Hyperbolic 
Functions 
 Zeros 
 Zeros of sinh z & cosh z are pure imaginary and are 

respectively, 
 

 Also, note that 
 
 

( ) ( )
( ) ( )[ ]

[ ]
( )

( )31sinsinhcoscoshcosh Similarly,
30sincoshcossinhsinh

sinhcoscoshsin         
sinhcoscoshsin         

sinsinsinh





yxiyxz
yxiyxz

xyixyi
xyixyi

ixyiiziz

+=
+=∴
+−−=

−+−−=
+−−=−=

( )  ,2 ,1 ,0for    
2

12  and  ±±=+== ninzinz ππ



Trigonometric & Hyperbolic 
Functions 
 Periodicity 
 From (21), 

 
 
 
 

 From (30) & (31), 
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wzzw sin if   sin 1 == −

Inverse Trigonometric & 
Hyperbolic Functions 
 Since the inverse of these analytic functions 

are multiple-valued functions, they do NOT 
possess inverse functions in its strictest 
interpretation. 

 Inverse sine 
 Def. 
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Inverse Trigonometric & 
Hyperbolic Functions 
 Inverse cosine 

 
 
 

 Inverse tangent 
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Inverse Trigonometric & 
Hyperbolic Functions 
   Ex. Find all values of  
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Inverse Trigonometric & 
Hyperbolic Functions 
 Derivatives 
 To find the derivative of  w = sin−1z, we begin by 

differentiating z = sin w: 
 
 ( ) ( )

( ) 212

1

212212

1
1sin

1
1

sin1
1

cos
1   sin

z
z

dz
d

zwwdz
dww

dz
dz

dz
d

−
=∴

−
=

−
==⇒=

−

( ) 2
1

212

1

1
1tan   and   

1
1cos

z
z

dz
d

z
z

dz
d

+
=

−

−
= −−

87 



Inverse Trigonometric & 
Hyperbolic Functions 
   Ex. Find the derivative of w = sin−1z at 
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Inverse Trigonometric & 
Hyperbolic Functions 
 Inverse hyperbolic functions & derivatives 

 
 
 
 
 
 

   Ex. Find all values of cosh−1(−1) 
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